분유는 아Ʞ에게 ꌭ 필요한 ‘생명쀄’로 여겚집니닀. 하지만 곌연 귞럎까요? 읎 Ꞁ은 분유의 역사륌 돌아볎고, 현대 분유의 성분곌 숚겚진 녌란을 깊읎 있게 닀룹니닀. 우늬는 분유가 아Ʞ에게 ‘생명쀄’읞지, 아니멎 끊얎낎알 할 ‘썩은 동아쀄’읞지 핚께 생각핎볌 것입니닀.

읎 심잵 분석을 통핎 ì•„êž° 걎강곌 ꎀ렚된 쀑요한 결정을 낎늬는 데 도움읎 되Ʞ륌 바랍니닀.


섞계 최쎈 분유의 탄생곌 19섞Ʞ 농업 환겜

1867년, 독음 화학자 저슀투슀 폰 늬비히는 **‘Liebig’s Perfect Infant Food’**륌 개발했습니닀. 읎것읎 섞계 최쎈 상업용 분유의 시작읎죠. 처음엔 밀가룚, 우유, 맥아가룚, 탄산수소칌륚읎 죌성분읎었습니닀. 당시에는 몚유륌 볎충하는 영양식윌로 나왔습니닀.

읎얎서 1869년, 믞국에선 유사한 ‘Leibig’s Soluble Infant Food’가 등장했습니닀. 또한, 1870년대에는 슀위슀 넀슬레가 **‘Nestlé’s Infant Food’**륌 선볎였죠. 읎는 ‘우유와 시늬얌’만윌로 만든 최쎈의 ‘완전 읞공 분유’였습니닀. ꎀ렚 낎용은 [TIME지]나 [Contemporary Pediatrics 학술지]에서 확읞할 수 있습니닀.

1867년 분유 원료와 곌거 농업 환겜의 찚읎

1867년, 분유의 핵심 원료는 ‘생유’였을 가능성읎 큜니닀. 당시엔 저옚 삎균 Ʞ술읎 널늬 쓰읎지 않았Ʞ 때묞입니닀. 룚읎 파슀퇎륎가 Ʞ술을 개발했지만, 유제품 적용은 1880년대 읎후였습니닀. 따띌서 늬비히 분유의 우유는 생유륌 가공한 형태였을 겁니닀.

19섞Ʞ 분유의 원료: 생유와 탈지 분유

음부 Ʞ록에서 탈지 분유 사용읎 얞꞉됩니닀. 지방을 분늬하고 분말화한 형태였겠죠. 현재 한국은 삎균 또는 멞균된 우유만 유통합니닀. 하지만 유럜곌 믞국 음부에선 소비자의 선택권 볎장을 위핎 생유 구맀가 가능합니닀. **[생유 선택권의 역사]**에서 더 자섞히 닀룚겠습니닀.

19섞Ʞ 농업 환겜: 화학 였엌윌로부터의 자유

밀가룚와 맥아는 얎땠을까요? 당시 ‘유Ʞ농’ 개념은 없었습니닀. 귞럌에도 현대의 화학 였엌 농업 환겜곌는 달랐습니닀.

화학 농앜: 현대적읞 화학 농앜의 대량 사용은 19섞Ʞ 후반부터 20섞Ʞ에 걞쳐 볞격화되었습니닀. 1860년대엔 음부 삎충제가 쓰였지만, 사용은 맀우 제한적읎었습니닀. 따띌서 밀가룚나 맥아에 합성 농앜읎 대량 사용될 가능성은 거의 없었죠.

화학 비료: 화학 비료는 19섞Ʞ 쎈부터 개발되었습니닀. 1860년대 독음에서는 칌륚 비료의 산업 생산읎 시작됐습니닀. 귞러나 질소 비료의 대량 생산은 20섞Ʞ 쎈 하버-볎쉬 공법 읎후 가능핎졌습니닀. 당시엔 유Ʞ질 비료와 핚께 음부 묎Ʞ 비료가 쓰였을 수 있습니닀. 하지만 였늘날 같은 대규몚 였엌은 아니었죠. 였히렀 화학 비료의 역할읎 녌쟁 쀑읞 시Ʞ였습니닀.

GMO 작묌: 유전자 변형(GM) 작묌은 20섞Ʞ 후반 DNA Ʞ술 발전곌 핚께 개발됐습니닀. 예륌 듀얎, 최쎈의 GM 박테늬아는 1973년에 개발되었죠. 1867년에는 GMO 작묌 개념 자첎가 없었습니닀.

결론적윌로, 늬비히 분유의 원료읞 우유는 생유륌 가공한 형태였을 겁니닀. 또한, 밀가룚와 맥아는 유Ʞ농 읞슝은 없지만, 현대 화학 농앜읎나 GMO의 영향을 받지 않은 곡묌읎었을 겁니닀. 당시 농업은 현재볎닀 훚씬 자연에 가까웠습니닀.


믞국 분유의 발전곌 ‘쎈가공식품’윌로의 진화

19섞Ʞ 후반부터 20섞Ʞ 쀑반까지, 믞국 분유는 크게 변했습니닀. 뚌저 1853년, 게음 볎든은 응축우유륌 개발했습니닀. 읎는 장Ʞ 볎ꎀ 가능한 우유 제품 상업화의 Ʞ반을 닀졌습니닀. [Early Learning Nation 재닚] 연구륌 통핎 읎륌 확읞할 수 있습니닀.

1928년에는 알프레드 볎슀워슀가 시밀띜(Similac)을 출시했습니닀. 귞늬고 1959년, Mead Johnson읎 Enfamil을 낎놓윌며 시장에 자늬 잡았습니닀. 읎 곌정은 [As You Sow êž°ì—… 볎고서] 등에서 자섞히 닀룹니닀.

쎈Ʞ 분유와 산업화: ‘쎈가공식품’의 시작

식품업자듀은 1940년대부터 1960년대에 걞쳐 분유가 영양학적윌로 크게 개선되었닀고 죌장합니닀. 특히, 철분 강화, 유청닚백 강화, 지방 배합, 귞늬고 탈수 유제품 형태로의 발전읎 죌횚했습니닀. 읎러한 변화듀읎 ì•„êž° 걎강에 ì–Žë–€ 영향을 믞쳀는지 자섞히 분석핎 뎅시닀.

1853년, 게음 볎든의 응축우유 개발은 유제품 산업화의 쀑요한 전환점읎었습니닀. 응축우유 개발의 가장 큰 의믞는 ‘볎졎성 혁신’입니닀. 볎든은 우유의 수분을 진공 상태에서 제거했습니닀. 읎로 읞핎 냉장 시섀읎 없던 당시에도 우유륌 장Ʞ간 볎ꎀ하고 공꞉할 수 있었습니닀.

특히 믞국곌 같읎 영토가 큰 나띌에서는 귞늬고 전쟁 쀑 군대 식량윌로 응축우유는 쀑요한 역할을 핎왔습니닀. 하지만 읎러한 ‘군대 식량’윌로서의 분유와, 아Ʞ의 생명을 읎얎죌는 수닚윌로서의 분유는 ê·ž 졎재 읎유부터 닀늅니닀. 읎 점은 얎렵지 않게 읎핎하싀 수 있을 것입니닀.

가공식품의 시작은 전쟁곌 밀접한 ꎀ렚읎 있습니닀. **[전쟁곌 식품 산업의 ꎀ계]**에서 더 자섞히 섀명하겠습니닀. 응축우유는 생유의 자연 상태륌 벗얎나 읞위적윌로 가공된 첫 대량 생산 유제품 쀑 하나였습니닀. 귞늬고 읎는 분말 형태의 분유 개발을 쎉진했습니닀. 궁극적윌로 식품 산업 전반의 가공식품화륌 가속화하는 Ʞ반읎 되었습니닀.

영양 강화의 필요성: 쎈가공식품의 귞늌자

ê²°êµ­, 읎것읎 바로 **’쎈가공식품윌로의 묞’**을 활짝 엎었습니닀. 생유는 송아지에게 필요한 자연 영양분을 충분히 제공합니닀. 귞러나 가공 곌정을 거치멎서 자연적읞 성분 구성읎 변형되거나 손싀될 수 있습니닀. 응축우유는 특정 영양소 농도가 높았습니닀. 하지만 유아에게 직접 뚹읎멎 당 핚량읎 너묎 높거나 닀륞 영양소가 부족할 수 있었죠.

읎러한 배겜 속에서 영양 강화의 필요성읎 대두됐습니닀. 대량 생산곌 장Ʞ 볎ꎀ을 위핎 가공된 분유는 몚유나 생유가 죌는 몚든 믞량 영양소와 생첎 활성 묌질을 닎아낎Ʞ 얎렀웠습니닀. 따띌서 20섞Ʞ 쀑반, 특히 1950년대 읎후부터는 읞공적읞 영양 묌질(철분, 비타믌, 믞넀랄 등)을 첚가하여 분유의 영양학적 완전성을 볎강하는 시도가 볞격화되었습니닀.

예륌 듀얎, 시밀띜(Similac)은 1959년에 철분 강화 분유륌 처음 출시하며 영아 빈혈 묞제륌 핎결하렀 했습니닀.

종합하자멎, 게음 볎든의 응축우유 개발은 ‘쎈가공식품’읎띌는 용얎가 생ꞰꞰ 훚씬 전부터 식품을 대량 생산 및 유통에 적합하도록 가공하는 쀑요한 산업화 닚계륌 엎었습니닀. 읎는 궁극적윌로 분유에 읞공적읞 영양 강화륌 필요로 하는 배겜읎 되었닀고 볌 수 있습니닀.


1959년 시밀띜(Similac) 묎Ʞ철 철분 강화 분유와 현대 곌학의 ì§„ì‹€

1. 1959년 시밀띜 철분 강화 분유에 사용된 철분 형태

1959년 Similac읎 철분 강화 분유륌 처음 출시했을 때, 죌로 사용된 철분 형태는 **황산제음철(Ferrous Sulfate)**곌 같은 묎Ʞ철읎었습니닀. 당시 성분표 확읞은 얎렵습니닀. 하지만 20섞Ʞ 쀑반 읎후 식품 강화에 가장 흔히 쓰읞 철분엌읎 바로 황산제음철읎었습니닀.

황산제음철은 비용읎 낮아 널늬 사용되었습니닀. 하지만 변비나 위장 장애 같은 소화Ʞ 불펞감을 유발할 수 있는 닚점도 있었습니닀.

2. 당시 곌학 수쀀 읎핎와 였늘날의 ꎀ점

2-1. 당시 곌학 수쀀의 읎핎 (1950년대)

1950년대에도 철분의 쀑요성곌 철분 결핍성 빈혈은 잘 알렀젞 있었습니닀. 귞러나 식묌성 철분(비헎철)곌 동묌성 철분(í—Žì² )의 흡수윚 찚읎에 대한 읎핎는 였늘날볎닀 훚씬 부족했습니닀. 또한, 아Ʞ의 믞발달된 소화 및 대사 시슀템읎 읎 두 가지 철분 형태륌 닀륎게 처늬하는지에 대한 깊은 읎핎도 믞흡했습니닀.

헎철곌 비헎철의 구분: 헎철은 죌로 육류, 생선 등 동묌성 식품에 풍부하며 흡수윚읎 높습니닀(15-35%). 반멎, 비헎철은 윩류, 녹색 잎채소, 곡묌 같은 식묌성 식품에 졎재하며 흡수윚읎 낮습니닀(2-20%). 더욱읎, 비헎철은 플튞산, 폎늬페놀, 칌슘 등 닀륞 식품 성분에 의핎 흡수가 방핎받을 수 있습니닀. 헎철곌 비헎철의 흡수 메컀니슘 찚읎는 20섞Ʞ 후반부터 명확히 규명되었습니닀.

영아 대사 특수성: 영아, 특히 믞숙아나 저첎쀑아의 소화 시슀템은 성읞곌 닀늅니닀. 철분 흡수와 조절 능력읎 믞숙한 특징을 볎입니닀. 당시에는 읎러한 믞묘한 생늬학적 찚읎로 읞한 비헎철 곌닀 공꞉의 잠재적 위험에 대한 읞식읎 낮았습니닀. 결곌적윌로 ‘많읎 죌는 것읎 좋닀’는 닚순한 양적 접귌읎 지배적읎었습니닀.

2-2. 였늘날의 최신 녌묞 및 자료가 말핎죌는 ì§„ì‹€

현재 곌학은 헎철곌 비헎철의 흡수 메컀니슘은 묌론, 영아에게 믞치는 영향을 훚씬 더 명확하게 읎핎하고 있습니닀.

철분 흡수의 복잡성: 최신 연구에 따륎멎, 영아의 철분 흡수는 닚순히 철분 양에만 좌우되지 않습니닀. 철분 형태, 비타믌 C와 같은 비헎철 흡수 쎉진 성분, 귞늬고 영아의 철분 상태 등 닀양한 요읞에 의핎 복합적윌로 조절됩니닀. 특히, 영아의 장은 성읞볎닀 믞숙하여 특정 영양소의 흡수와 ë°°ì„€ 조절 능력읎 완벜하지 않을 수 있습니닀.

비헎철 곌닀 공꞉의 위험성:

산화 슀튞레슀: 비헎철은 곌도하게 공꞉될 겜우 장낎에서 산화 슀튞레슀륌 유발할 수 있습니닀. 철분은 강력한 산화 쎉진제로 작용할 수 있습니닀. 따띌서 곌도한 비헎철은 장 섞포에 손상을 죌거나 장낎 믞생묌쎝의 불균형을 쎈래할 수 있습니닀 ([PMC], “Excess iron intake…”, 2017).

닀륞 믞량 원소와의 상혞작용: 곌도한 철분은 아연읎나 구늬와 같은 닀륞 필수 믞량 원소의 흡수륌 방핎할 수 있습니닀. 읎는 성장 및 멎역 Ʞ능에 부정적읞 영향을 믞칠 수 있습니닀 ([PMC], 2017 녌묞).

성장 및 발달 저핎 가능성: 음부 연구에서는 철분 결핍읎 없는 영아에게 곌도한 묎Ʞ묌 철분을 공꞉했을 때 성장 지연읎나 읞지 및 욎동 발달에 부정적읞 영향을 믞칠 수 있음을 시사합니닀 ([PMC], 2017 녌묞). 읎는 영아의 믞성숙한 ì²  항상성 조절 능력곌 ꎀ렚될 수 있습니닀.

더욱읎, 묎Ʞ묌 철분 강화 분유나 시늬얌 같은 쎈가공식품은 믞토윘드늬아 Ʞ능 장애와 연ꎀ되얎 전 섞계 얎늰읎듀의 정신적 묞제 및 대사 묞제에 Ʞ여할 수 있습니닀. 게닀가 여Ʞ에 Ꞁ늬포섞읎튞가 더핎지멎 믞토윘드늬아의 수난은 더욱 심화됩니닀.


분유 빈혈의 ì§„ì‹€: 당시 의사듀은 정말 몰랐을까요?

결론부터 말하멎, 당시 의사나 곌학자듀읎 영아 빈혈의 원읞을 전혀 몰랐던 것은 아닙니닀. 사싀, 분유륌 뚹는 아Ʞ에게 빈혈읎 흔한 묞제임을 읞지했Ʞ에 Similac읎 철분 강화 분유륌 출시한 것읎죠.

믞국 낙농업의 특수성: 홀슀타읞 품종곌 A1 베타-칎제읞

귞늬고 극히 음부 전묞가듀은 읎것읎 닚순한 철분 묞제가 아니띌는 사싀도 알았습니닀. 읎는 믞국의 소 품종 선택, 공장식 사육, 귞늬고 생유 ꞈ지가 가젞옚 필연적읞 결곌였습니닀.

믞국은 우유 생산량을 극대화하Ʞ 위핎 넀덜란드의 홀슀타읞 품종을 도입했습니닀. 앜 5천에서 8천 년 전, 넀덜란드 지역에서 자연 발생한 유전적 돌연변읎로 읞핎 우유 생산량읎 많은 소 개첎가 나타났고, 읎후 읎 형질은 선택 교배륌 통핎 고정되었습니닀.

믞국은 읎러한 고생산성 품종을 쀑심윌로 낙농업을 발전시쌰고, ê·ž 결곌 A1 beta-칎제읞 유전형질을 가진 소듀읎 널늬 퍌지게 되었윌며, 였늘날 전 섞계적윌로 확산되었습니닀. 귞늬고 대한믌국 젖소는 99% 홀슀타읞 품종입니닀.

묌론 읎 품종은 우유 생산량 멎에서 맀우 우수하여 업자듀에게 큰 읎익읎 되었습니닀. 하지만 읎 홀슀타읞종의 닚백질은 A1 유전형질을 가지고 있습니닀. 귞늬고 안타깝게도, 읎 A1 베타-칎제읞은 우유뿐 아니띌 아Ʞ의 생명쀄읞 분유에도 고슀란히 닎Ʞ게 됩니닀.

A1 vs A2 베타-칎제읞(beta-칎제읞)에 대핮 공부하는 것은 ì•„êž° 걎강을 포핚핎서 청소년 귞늬고 녞앜자의 걎강한 식탁을 위핎 쀑요합니닀. 몚든 우유와 치슈가 영양학에서 말하듯 닚백질곌 칌슘의 볎고가 되는 것은 아닙니닀. 앞윌로 저와 핚께 공부핎 나가시닀 볎멎 ì–Žë–€ 우유와 치슈륌 선택핎알 할지 슀슀로 결정 낮멮 수 있을 것입니닀.

귞늬고 대한믌국에서도 A2 베타-칎베읞 우유륌 만날 수 있게되었닀고 듀었습니닀. Ʞ업의 목적은 읎윀입니닀. 소비자의 변화하고 요구가 크고 확싀할수록 생산자는 시장 Ʞ회륌 포착하여 변하고 투자합니닀.

소비자는 닚순히 선택하는 졎재음 수 있습니닀. 하지만 현명한 소비자는 “섞상을 바꟞는 졎재”입니닀.

한국에서 만나시는 A2우유에 ꎀ핎서는 별도의 장에서 닀시 섀명하도록 하겠습니닀.

믞국 생우유 유통 ꞈ지와 분유 제조 곌정의 변화

믞국에서 생우유(raw milk) 유통읎 ꞈ지된 시점은 1908년입니닀. 특히 시칎고 시가 믞국 최쎈로 생우유 판맀륌 ꞈ지하고 삎균 우유만을 허용했습니닀. 읎후 1920~30년대에 전국적윌로 삎균 우유 법안읎 확산되었습니닀. 믞국 연방 정부는 1940년대 후반부터 공공 볎걎 찚원에서 전국적윌로 생우유 유통 ꞈ지 또는 엄격 규제륌 추진했습니닀.

따띌서 1950년대 믞국에서 분유 제조에 쓰읞 우유는 100% 삎균 또는 고옚삎균(HVAT) 처늬된 우유였습니닀. 결론적윌로 1959년 시판된 시밀띜 분유에는 생우유가 사용될 수 없었습니닀. 최소 한 번 읎상 고옚삎균을 거친 우유륌 사용했음읎 녌늬적읎고 정책적윌로 명확합니닀.

고옚삎균(UHT, HTST) 곌정에서 우유 닚백질은 부분적윌로 또는 완전히 변성됩니닀. 읎처럌 변성된 우유 닚백질로 만든 분유는 영양적 생첎읎용률(bioavailability)읎 떚얎질 가능성읎 높습니닀. 특히 철분곌 칌슘, 아연 등의 믞넀랄 흡수윚읎 감소합니닀. 읎믞 삎균/멞균 처늬로 한 번 손상된 닚백질읎 분유 제조 공정 (분묎걎조 등)에서 읎쀑윌로 ì—Ž 변성되었을 가능성읎 높습니닀.

시밀띜 왞 대부분의 분유는 영양적 질읎 낮은 읎쀑 가엎 분유였을 가능성읎 맀우 높습니닀. 읎러한 읎유로 믞량 영양소의 생첎읎용률 저하와 ꎀ렚된 볎고듀읎 읎후 쏟아지게 된 것입니닀.

1950년대 ì•„êž° 빈혈의 복합적읞 원읞

1950년대 Ʞ쀀윌로 분유륌 뚹은 아Ʞ듀읎 빈혈을 앓았던 읎유륌 쀑점적윌로 삎펎볎겠습니닀.

첫짞, 원래 분유의 철분 핚량읎 낮았습니닀. 쎈Ʞ 분유는 읞공적윌로 철분을 강화하Ʞ 전에는 몚유볎닀 철분 핚량읎 낮았습니닀.

둘짞, 몚유 대비 철분 흡수윚읎 낮았습니닀. 몚유의 철분은 양은 적지만, 띜토페늰 등 특수 성분 덕분에 흡수윚읎 맀우 높습니닀(앜 50%). 반멎, 당시 묎Ʞ철 강화 분유에 쓰읞 비헎철은 흡수윚읎 훚씬 낮았습니닀(3-4% 정도로 추정).

ì…‹ì§ž, ì¡°êž° 읎유 및 부적절한 읎유식 ꎀ행도 빈혈을 악화시쌰습니닀. 당시에는 영아에게 읎륞 시Ʞ에 소화하Ʞ 얎렀욎 음반 삎균 또는 멞균 우유륌 죌거나, 철분읎 부족한 곡묌 위죌의 읎유식을 조Ʞ에 도입하는 겜우가 많았습니닀.

특히 유전 변형 A1 닚백질을 지닌 홀슀타읞 품종의 삎균, 멞균우유는 철분 핚량읎 낮을 뿐만 아니띌 영아의 장에서 믞섞한 혈액 손싀을 유발하여 빈혈을 더욱 악화시킬 수 있습니닀 ([MedlinePlus Medical Encyclopedia]).

ë„·ì§ž, 저장 철분의 고갈도 쀑요했습니닀. 영아는 출생 시 얎뚞니에게서 받은 철분 저장량(생후 앜 4~6개월까지 유지)을 소몚한 후 왞부 음식윌로 철분을 볎충핎알 합니닀. 분유나 읎유식윌로 충분한 철분을 공꞉받지 못하멎 빈혈에 췚앜핎지는 것읎죠.

당시 곌학자듀읎 놓쳀던 ì§„ì‹€: 믞량 영양소의 믞묘한 작용

당시 의사나 곌학자듀읎 몰랐던(혹은 충분히 읎핎하지 못했던) 점은 묎엇음까요?

헎철곌 비헎철 흡수윚 찚읎에 대한 깊은 읎핎 부족: 읎 둘의 귌볞적읞 생첎 읎용률 찚읎와 영아 대사의 특수성에 대한 심잵 연구 결곌는 20섞Ʞ 후반에알 축적되Ʞ 시작했습니닀. 귞전에는 ‘철분’읎띌는 닚음한 개념윌로 접귌하는 겜향읎 강했습니닀.

곌잉 묎Ʞ묌 형태의 철분의 잠재적 부작용: 철분 결핍의 위험성은 읞지했지만, 불필요한 곌잉 묎Ʞ철 공꞉읎 영아의 장 걎강, 믞생묌쎝, 닀륞 믞량 원소 흡수, 심지얎 발달에 믞칠 수 있는 부정적읞 영향에 대한 데읎터는 맀우 부족했습니닀. 결곌적윌로 철분읎 필수 영양소읎니 ‘많읎 넣을수록 좋닀’는 읞식읎 지배적읎었습니닀.

몚유의 복잡한 볎혞 메컀니슘: 몚유가 닚순히 영양 공꞉원음 뿐만 아니띌, 영아의 믞숙한 소화Ʞ 및 멎역 시슀템을 볎혞하고 철분 흡수륌 최적화하는 복잡한 생첎 활성 성분(띜토페늰 등)을 포핚한닀는 사싀에 대한 읎핎가 제한적읎었습니닀. 따띌서 분유는 읎러한 복합적읞 볎혞 메컀니슘을 흉낮 낎Ʞ 얎렀웠습니닀.

결론적윌로, 1950년대의 곌학자듀은 영아 빈혈 묞제륌 핎결하Ʞ 위핎 당시로서는 최선을 닀했습니닀. 하지만 귞듀의 지식은 현대 영양학곌 생늬학읎 축적한 방대한 정볎에 비하멎 상대적윌로 쎈Ʞ 닚계였습니닀. 특히, 믞량 영양소의 믞묘한 대사 곌정곌 묎Ʞ철 곌잉 공꞉의 잠재적 위험성에 대한 읎핎는 제한적읎었습니닀.


2025년 분유 속 묎Ʞ철 성분: 상식의 상싀음까요?

1. 귞렇닀멎, 현재 우늬 ì•„êž° 분유 속 철분 성분은?

였늘날, 대부분의 상업용 유아용 분유는 **철분 강화(iron-fortified)**되얎 판맀됩니닀. 1959년 Similac의 첫 시도 읎후, 영아 철분 결핍성 빈혈 예방을 위핎 철분 강화는 전 섞계적읞 표쀀읎 되었습니닀. 귞늬고 현재 분유에 사용되는 철분 형태 역시 여전히 변핚없읎 묎Ʞ철 형태입니닀.

대표적윌로 닀음 화합묌듀읎 사용됩니닀.

황산제음철 (Ferrous Sulfate): 가장 흔히 사용되는 형태입니닀. 가격읎 저렎하고 상대적윌로 닀륞 묎Ʞ철에 비핎 생첎 읎용률읎 높습니닀. 귞러나 변비, 메슀꺌움, 검은 변곌 같은 위장 장애륌 유발할 수 있습니닀.

Ꞁ룚윘산제음철 (Ferrous Gluconate): 황산제음철볎닀 위장 장애가 적닀고 알렀젞 음부 분유에서 사용되Ʞ도 합니닀.

푞마륎산제음철 (Ferrous Fumarate): 읎 형태는 비교적 안정적읎며 철분 핚량읎 높은 펞입니닀.

전핎철 (Elemental Iron): 순수 철분 형태로, 특정 제조 공법에서 쓰읎Ʞ도 합니닀.

대부분의 영아용 분유는 1늬터당 4~12mg의 묎Ʞ철을 포핚하도록 제조됩니닀. 읎는 생후 4~6개월 읎후 영아에게 필요한 철분 섭췚량을 충족시킀Ʞ 위핚입니닀. 따띌서 믞국 소아곌학회(AAP)와 유럜 소아소화Ʞ영양학회(ESPGHAN) 등 죌요 Ʞꎀ듀은 묎Ʞ철 강화 분유의 사용을 계속 권장합니닀.

황산제음철, Ꞁ룚윘산제음철, 푞마륎산제음철, 전핎철은 분유뿐 아니띌 성읞용 철분 볎충제에도 ꎑ범위하게 사용됩니닀. 읎듀은 **몚두 묎Ʞ철(non-heme iron)**로서, 곌잉 ì„­ì·š 시 장낎 엌슝, 흡수윚 저하, 산화 슀튞레슀 유발 가능성읎 있습니닀.

귞늬고 안타깝게도 읎듀 황산제음철, Ꞁ룚윘산제음철, 푞마륎산제음철 등 묎Ʞ철 제제는 지ꞈ도 **의앜품윌로 만듀얎젞 의사듀읎 빈혈읎나 철분 결핍 환자에게 처방합니닀. 죌로 가격, 볎험 ꞉여, Ʞ졎 ꎀ행, 볎수적 진료 환겜 때묞읎며, **최신 연구듀읎 지적하는 위험성읎나 더 나은 대안듀(예: í—Žì² , 아믞녞산 킬레읎튞 철분)**은 의료 현장에서 아직 충분히 반영되지 않고 있습니닀.

2. ‘식묌 유래 묎Ʞ철은 도움읎 되지 않는닀’는 비판, 귞늬고 AAP의 대응

현대 영양학은 비헎철(식묌 유래 묎Ʞ철 포핚)의 흡수윚읎 헎철볎닀 현저히 낮닀는 점을 분명히 읞지합니닀. 또한, 곌잉 공꞉ 시 잠재적읞 부작용읎 있을 수 있닀는 점도 잘 알렀젞 있습니닀. 읎러한 비판에도 불구하고, 믞국 소아곌 협회(AAP)가 여전히 묎Ʞ철 Ʞ반의 철분 강화 분유륌 권장하는 데에는 몇 가지 복합적읞 읎유가 있습니닀. (한국 소아곌 협회는 믞국곌 유럜의 가읎드띌읞을 수용하고 있습니닀.)

첫짞, 싀용성곌 겜제성 때묞입니닀. 헎철은 흡수윚읎 높지만 생산 비용읎 맀우 높고 동묌성 원료띌는 한계가 있습니닀. 따띌서 대량 생산되는 분유에 헎철을 사용하는 것은 현재로서는 겜제적, 싀용적윌로 얎렵습니닀.

반멎에 황산제음철 같은 묎Ʞ철은 맀우 저렎하고 대량 생산 및 공꞉읎 용읎합니닀. 안정적윌로 공꞉되얎알 하는 분유의 특성상 겜제성은 제조사에게 쀑요한 ê³ ë € 사항입니닀. 또한, 묎Ʞ철은 안정성곌 볎ꎀ 용읎성 멎에서도 뛰얎납니닀.

묎Ʞ철은 헎철볎닀 산화 안정성읎 우수하여 장Ʞ간 볎ꎀ 및 유통에 유늬합니닀. 게닀가 분유 제조 공정에서 닀륞 영양소와의 상혞작용 묞제도 덜 음윌킵니닀.

둘짞, ‘충분한 양’의 공꞉읎띌는 공쀑 볎걎 전략 때묞입니닀. 흡수윚읎 낮더띌도 분유에 충분한 양의 묎Ʞ철을 첚가핚윌로썚 영아가 필요한 최소한의 철분을 ì„­ì·ší•  수 있도록 하자는 죌장입니닀. AAP는 읎러한 ‘강화’륌 통핎 빈혈 예방에 싀질적읞 횚곌가 있음을 여러 연구에서 확읞했닀고 죌장합니닀.

ì…‹ì§ž, ‘위험 대비 읎득’ 평가가 쀑요합니닀. AAP는 묎Ʞ철 강화 분유의 잠재적 위험(곌잉 철분윌로 읞한 산화 슀튞레슀나 장낎 믞생묌 불균형 등)을 읞지합니닀. 귞럌에도 심각한 발달 지연곌 읞지 능력 저하륌 쎈래할 수 있는 철분 결핍성 빈혈을 예방하는 것읎 더 큰 읎득읎띌고 판당하는 겜향읎 있습니닀.

하지만, 읎러한 죌장읎 얌마나 현대 곌학곌 동떚얎진 시대착였적 발상읞지 볎여죌는 수많은 녌묞듀읎 있습니닀.

ê·ž 녌묞듀 쀑 음부륌 소개합니닀.

[Karamantziani T. et al. (2024) Children (Basel) 첎계적 늬뷰 및 메타분석]: 영아의 겜구 철분 볎충은 유익균(Bifidobacteria) 비쀑 감소륌 앜 10% 유발하며 장낎 불균형을 쎈래합니닀. ([Europe PMC], [PubMed], [MDPI] 등)

[Paganini D. & Zimmermann MB (2017) Am J Clin Nutr 영아 및 소아 대상]: 철분 볎충(MNPs/철제제)은 섀사 및 장엌 발생률 슝가, 장낎 유익균 감소, 귞늬고 병원균 슝식곌 엌슝을 유발합니닀. ([arXiv], [PubMed], [ResearchGate] 등)

[Finlayson-Trick EC et al. (2020) Gastrointestinal Disorders 종섀]: 철분 볎충은 낮은 흡수윚로 읞핎 장낎 산화 슀튞레슀륌 슝가시킀고 병원성 섞균 성장을 쎉진합니닀. 결곌적윌로 소아 엌슝 질환 및 감엌 슝가 우렀가 있습니닀. ([PMC], [MDPI], [Frontiers] 등)

[Preterm Infant Study (예비, Nebraska대) 믞숙아 14명 추적]: 쎈Ʞ 철분 투여 후 대장균 등 병원균 우점화 현상 및 ROS 슝가가 ꎀ찰되었습니닀. ([PubMed], [MDPI], [American Chemical Society Publications] 등)

[“Potential adverse effects of iron supplementation in developing countries” (Journal of Nutrition, 2007)]: 곌잉 철분의 부작용에 대한 우렀륌 제Ʞ하며, 특히 철분 결핍읎 없는 아동에게 곌도한 철분 공꞉의 위험성을 녌의합니닀.


‘의앜품읎 아닌’ 분유: ‘쎈가공식품’ ê·ž 읎상?

분유가 ‘의앜품’읎 아닌 ‘식품’윌로 분류되멎서 규제적 허점읎 발생합니닀. 분유가 닚백질 파우더나 음부 걎강 볎조 식품곌 유사한 ꎀ늬 첎계륌 가지므로, 닀음곌 같은 묞제듀을 알Ʞ합니닀.

안전성 검슝의 한계와 숚겚진 유핎 묌질

첫짞, 안전성 검슝의 한계가 명확합니닀. 의앜품은 출시 전 엄격한 임상시험곌 GMP(Good Manufacturing Practice) Ʞ쀀을 충족핎알 합니닀. 하지만 분유는 식품 Ʞ쀀을 따륎Ʞ에 엄격한 검슝 의묎가 없습니닀. 특히 Ꞁ늬포섞읎튞 같은 잔류 농앜읎나 믞섞 플띌슀틱, 곌불화화합묌(PFAS) 등 신종 유핎 묌질에 대한 검사가 제대로 읎룚얎지지 않는닀는 점은 큰 우렀륌 낳습니닀.

귌거 자료: 2025년 5월 [농믌신묞] 볎도에 따륎멎, 한국 식앜처의 수입 농산묌(분유 원료 포핚) 검사 항목에서 Ꞁ늬포섞읎튞가 누띜되얎 있습니닀. 아니 정확히 말하자멎 검사 항목에는 듀얎있윌나, 싀제로는 검사되지 않고 있습니닀. EFSA는 EU에서 유아용 식품의 Ꞁ늬포섞읎튞륌 정Ʞ적윌로 몚니터링합니닀. 귞러나 한국윌로 수출된 제품에 대한 국낎 검슝은 여전히 불투명합니닀.

성분 투명성 부족곌 ‘GRAS’ 개념의 비판

둘짞, 성분 투명성도 부족합니닀. 제조사의 ‘순수한 신고’에 의졎하는 겜향읎 강합니닀. ê·ž 결곌, 소비자듀읎 제품의 원료 출처, 가공 방식, 귞늬고 첚가묌의 몚든 정볎륌 투명하게 알Ʞ 얎렵습니닀. 특히 ‘귞띌슀 등꞉(GRAS, Generally Recognized As Safe)’ 같은 개념은 제조업첎의 자윚적 판닚에 의졎하는 겜우가 많아 비판의 대상읎 되Ʞ도 합니닀.


아Ʞ의 목숚을 걎 쀄타Ʞ: ‘생명쀄’읞가, ‘썩은 동아쀄’읞가?

분유는 볞질적윌로 몚유륌 대첎하Ʞ 위핎 고도로 가공된 **쎈가공식품(Ultra-Processed Food, UPF)**입니닀. 복잡한 제조 곌정을 거치고 여러 첚가묌(읞공 비타믌, 믞넀랄, 유화제, 안정제 등)읎 듀얎가멎서 자연 식품곌는 거늬가 멀얎집니닀.

‘BPA-free’의 허상곌 플띌슀틱 용Ʞ의 위험

흔히 “BPA-free”띌고 표Ʞ된 젖병곌 플띌슀틱 용Ʞ가 안전하닀고 여겚지지만, ê·ž 표Ʞ 자첎가 또 닀륞 착시음 수 있습니닀.

겉은 알룚믞늄 캔처럌 볎읎지만, 낎부는 BPA-free 플띌슀틱 윔팅읎 되얎 있는 깡통에 쎈가공식품, 분유가 닎겚, 장Ʞ간 볎ꎀ됩니닀.

ê²°êµ­ 아Ʞ듀은 왞형은 ꞈ속, 낎용묌은 “BPA-free읞지조찚 불확싀한 플띌슀틱” 용Ʞ에 닎ꞎ 쎈가공 분유륌 플띌슀틱 젖병곌 젖ꌭ지륌 통핎 섭췚하는 구조 안에 놓여 있윌며, 읎는 믞섞·나녞플띌슀틱 녞출읎띌는 위태로욎 쀄타Ʞ로 읎얎집니닀.

요컚대, 가공식품의 묞제는 닚지 낎용묌에만 있지 않습니닀. ê·ž 포장 용Ʞ, 특히 “BPA-free”띌는 마쌀팅 표시는 하나의 환상읎며, 읎는 제조업첎의 죌장음 뿐, 안전을 입슝하는 곌학적 Ʞ쀀은 아닙니닀.

싀제로, BPA-free띌는 표Ʞ륌 한 제품듀에 BPA 대용품윌로 사용되는 BPF, BPS, BPB 등 음부 대첎 비슀페놀 역시 혞륎몬 교란, 간 Ʞ능 읎상, 신겜계 읎상 등읎 BPA만큌 혹은 ê·ž 읎상 위험하닀는 연구듀읎 2015년 읎후 닀수 발표되고 있습니닀. 읎에 따띌 유럜 선진국은 읎듀 역시 규제 대상에 포핚시킀고 있습니닀. 프랑슀는 BPA 포핚 통조늌을 전멎 ꞈ지하고 BPS, BPF까지도 닚계적윌로 ꞈ지륌 진행 쀑입니닀.


‘상식의 상싀 시대’: 지ꞈ 우늬는 얎디로 가고 있나요?

2025년, 여전히 풀늬지 않는 질묞듀

현재, 2025년은 1950년대와 비교할 수 없을 정도로 곌학 Ʞ술곌 영양학적 지식읎 발전했습니닀. 귞럌에도 왜 여전히 분유에 묎Ʞ철읎 사용되며, ê·ž 잠재적 부작용에 대한 충분한 정볎가 ì•„êž° 볎혞자듀에게 제대로 전달되지 않을까요?

자국에서는 사용도 수입도 ꞈ지하멎서, 수출용 식품에는 읎쀑잣대륌 적용하는 나띌듀. 귞런데도 우늬는 ê·ž 나띌에서 옚 식재료륌 ‘검사항목’에만 Ʞ재핎놓고, 싀제로는 별닀륞 검사 없읎 묎사통곌시킀고 있습니닀. 법은 엄격하게 졎재하지만, ê·ž 싀행은 터묎니없읎 허술한 나띌. 읎런 몚순읎 대한믌국에서 반복되는 현싀, 정말 바꿀 방법은 없을까요?

“상식의 상싀 시대”띌고 푾념하는 것은 읎제 귞만하Ʞ로 합니닀. 푾념 대신 집념을 불태우Ʞ로 합니닀. 우늬가 바꿀 수 있습니닀. 아니, 읎제는 우늬가 바꟞지 않윌멎 안 되는 상황입니닀.

정볎 부족윌로, 혹은 부몚공부 부족윌로, 우늬 아읎듀에게 좋은 것을 뚹읞닀며, GMO 작묌곌 Ꞁ늬포섞읎튞로 자란 소의 젖, 귞것도 A1 닚백질을 지닌 우유륌 멞균 처늬하여 특수 공법윌로 만든 분유륌, ‘묎Ʞ철’읞지 ì–Žë–€ 읞공 영양소읞지 몚륎고, 닚지 분유통에 적힌 수치에 의졎, ì•„êž° 걎강에 도움읎 되는 식품읎띌 믿고 뚹읞 겜험읎 있닀멎—

읎제는 달띌젞알 할 때입니닀. 귞때는 몰랐얎도, 읎제는 알게 되었윌니— 지ꞈ부터는 상식을 싀행윌로 옮Ʞ시Ʞ 바랍니닀.

읎 몚든 사싀을 알고도, 손죌륌 위핎 예전에 자녀에게 뚹였던 ê·ž 분유륌 구맀하시겠습니까?

BPA-free띌는 ‘안심’ 띌벚읎 붙은 플띌슀틱 병에 닎아, 정말로 안심하고 맀음 수유하시겠습니까?

성장한 자녀가 “바빠서 ì–Žì©” 수 없닀”ë©°, “저속 녾화 식닚”읎띌고 듣고 볎았닀며, 6개월은 거뜬히 볎ꎀ되는 슉석밥을 대량 구입할 때, ê·žì € 지쌜볎고만 계시겠습니까?

녞년의 삶을 펞하게 지낎겠닀는 읎유로, 식탁을 찚늬Ʞ볎닀 슉석밥곌 닚백질 바, 닚백질 파우더에 의지하며 삎아가는 나날읎, 진정 저속 녞화로 읎얎질 것읎띌 허망을 쫒윌시겠습니까?

할아버지 할뚞니로서 손죌 듀에게 평생 쓰고도 낚을 재산 대신, 평생 치워도 끝읎 볎읎지 않는 였엌된 땅, 묌, 공Ʞ륌 묌렀쀄 수는 없는 녞늇읎지 말입니닀.

고사늬같은 아Ʞ의 손을 ꌭ 쥐얎볎섞요.

지ꞈ까지 알지 못했Ʞ에, 아Ʞ듀에 귞런 것을 묌늎 수 밖에 없었습니닀. 하지만 읎제 알고도 왞멎하거나 똑같은 행동을 반복한닀멎…

ISCC Plus는 읞첎 걎강읎나 낎분비 교란묌질의 위핎성을 평가하는 읞슝읞가요?

답은 닚연윔, 아니요 입니닀. **ISCC Plus (International Sustainability and Carbon Certification Plus)**는 독음에 볞부륌 둔 국제 비영늬 읞슝Ʞꎀ윌로, 바읎였맀슀 Ʞ반의 플띌슀틱읎나 재활용 가능한 자원을 사용할 겜우 공꞉망의 투명성, 지속가능성, 탄소발자국 감소 등을 검슝합니닀.

귞러나 **낎분비계 장애 유발 묌질(Endocrine Disrupting Chemicals, EDCs)**에 대한 읞첎 싀험, 독성 시험, 장낎 믞생묌 영향, 임신 쀑 태아 걎강에 대한 평가륌 하지는 않습니닀.

따띌서 ISCC Plus 읞슝을 받았닀고 핎서 ‘읞첎에 묎핎하닀’, ‘임신부나 영유아에게 안전하닀’는 의믞는 결닚윔 아닙니닀.

탄소발자국 25% 감소띌는 수치는 “전첎 묞제의 부분적 핎결”읎며, 나뚞지 75%는 여전히 환겜곌 걎강에 영향을 쀍니닀.

“25% 탄소발자국 감소”는 통상적윌로 플띌슀틱 생산·욎송·폐Ʞ 곌정의 옚싀가슀 배출량을 Ʞ졎 대비 음부 쀄였닀는 의믞입니닀.

하지만 **전첎 슉석밥 시슀템(플띌슀틱 생산, 낎용묌 가공, 밀뮉, 전자레읞지 가엎, 유통망 포핚)**에서의 쎝 환겜영향읎나 걎강영향은 100% 쀑 25%만 개선된 것음 뿐읎며, 나뚞지 75%는 여전히 막쀑한 곌제로 낚아 있습니닀.

탄소발자국만 쀄읎는 접귌윌로는 진정한 환겜을 생각하는 ‘환겜 걎강식’읎나 ‘저속 녾화 식닚’윌로 환곚탈태할 수 없습니닀.

또한 슉석밥 자첎가 쎈가공식품에 핎당하며,

  • 비자연적 포장(플띌슀틱)
  • 묎표Ʞ된 산화방지제, 윀활제, 윔팅제
  • Ꞁ늬포섞읎튞 잔류 ìš°ë €
  • 파ꎎ된 전분구조 및 빠륞 혈당 상승
  • 믞량의 믞섞플띌슀틱 또는 휘발성 유Ʞ화합묌(VOC) 방출

등의 위험 요읞읎 졎재합니닀.

읎러한 요소는 녾화 지연읎 아닌 녾화 쎉진, 대사질환 유발, 낎분비계 혌란 등윌로 읎얎질 수 있얎, **‘저속 녾화 식닚’**윌로 분류하Ʞ 찞윌로 믌망한 음입니닀.

정늬

ISCC Plus 읞슝은 ‘환겜 지속 가능성의 음부 잡멎(탄소쀑늜성)’에만 쎈점을 맞춘 읞슝읎며, 읞첎 걎강성, 낎분비 장애 가능성, 장Ʞ적 안전성 평가가 포핚되지 않Ʞ 때묞에, 핎당 플띌슀틱 용Ʞ에 닎ꞎ 슉석밥을 **‘저속 녾화 식닚’**읎띌 부륌 수 없습니닀.

ê²°êµ­, 탄소발자국을 진정윌로 쀄읎렀멎 슉석밥을 포핚한 쎈가공 식품의 소비 자첎륌 쀄읎는 것읎 가장 귌볞적읞 핎답입니닀.

ì°žê³ :

1. 전분의 구조와 소화 속도 변화: 생전분 vs 저띌틎화 vs 재결정화

집에서 갓 지은 밥에는 ‘저띌틎화된 전분(gelatinized starch)’읎 포핚되얎 있지만, 슉석밥은 닀음곌 같은 재가엎곌 걎조, 포장, 닀시 가엎의 복합 공정을 거치며 전분의 구조가 파ꎎ됩니닀.

전분은 조늬되며 저띌틎화되고, 읎 상태에서 냉각 to 재가엎되는 곌정은 전분의 재결정화 (retrogradation) 륌 유도합니닀.

귞러나 슉석밥읎나 재가엎된 밥은 저항전분읎 쀄고, 빠륎게 소화 가능한 전분(RDS, rapidly digestible starch)읎 슝가합니닀.

읎것읎 혈당을 빠륎게 올늬는 읎유입니닀.

2. 곌학적 연구 귌거

(1) Glycemic Index (GI) 연구

혞죌의 [University of Sydney]의 GI database에 따륎멎, 슉석밥은 음반 밥볎닀 GI가 더 높습니닀.

예: 갓 지은 흰쌀밥 (GI 앜 70), 슉석밥 or 재가엎된 흰쌀밥 (GI 80 읎상)

(2) 전분 구조 변화 연구 ([FAO/WHO], 1998)

“Starches subjected to processing such as high-heat or pressure cooking, drying, and rehydration tend to show increased glycemic responses due to altered granule structures.”

to ê³ ì—Ž, 걎조, 재가엎을 거친 전분은 혈당 반응읎 슝가핚.

(3) 공업화 식품의 혈당지수 변화 연구 (2015, [British Journal of Nutrition])

슉석 식품류는 조늬 전볎닀 소화윚읎 빠륎며, 혈당 상승률읎 높닀고 밝혀짐.

3. 슉석밥읎 혈당을 더 높읎는 구조적 읎유 요앜

구분구조소화 속도혈당 반응
집에서 갓 지은 밥전분읎 저띌틎화됚, 음부 저항전분 졎재쀑간볎통
슉석밥반복 가엎곌 포장 to 전분읎 쉜게 소화되도록 분핎됚빠늄높음

4. 한국 볎걎의료계 낮 읞식 격찚

한국에서는 여전히 슉석밥을 음반밥곌 동음시하거나 더 위생적읎띌 여Ʞ며 걎강식윌로 마쌀팅하는 겜우가 많습니닀. 귞러나 읎는 GI 연구나 전분 변화에 대한 국제적 식품곌학의 읎핎와는 닀늅니닀.

슉석밥은 닚순히 ‘갓 지은 밥볎닀 위생적’읎거나 ‘펞늬’한 것읎 아니띌, 전분 구조가 변화되얎 혈당을 더 빠륎게 올늎 수 있닀는 점에서 특히 당뇚, 대사슝후군, 읞슐늰 저항 환자에게는 죌의가 필요합니닀.

읎 사싀은 수십 펾 읎상의 국제 학술 연구에서 반복적윌로 슝명된 낎용입니닀.

부작용에 대한 정볎 불충분곌 ‘귞듀만의 늬귞’

닀시 분유의 묎Ʞ철 읎알Ʞ로 돌아와서. 묎Ʞ철의 잠재적 부작용, 슉 변비, 위장 장애, 장낎 믞생묌 불균형, 산화 슀튞레슀 등에 대핮 ì•„êž° 걎강을 책임지는 볎혞자듀에게 충분히 알늬지 않는닀는 점은 맀우 심각한 묞제입니닀. 읎러한 정볎 불충분은 닀음곌 같은 읎유로 발생할 수 있습니닀.

첫짞, 정볎 비대칭성읎 졎재합니닀. 의료 전묞가나 제조사는 ꎀ렚 연구륌 통핎 부작용 가능성을 읞지하고 있습니닀. 귞러나 읎륌 소비자에게 적극적윌로 알늬는 것은 제품 판맀에 부정적읞 영향을 믞칠 수 있습니닀.

둘짞, ‘겜믞한 부작용’윌로 치부하는 겜향읎 있습니닀. 변비나 검은 변 등은 흔히 ‘음시적읎고 겜믞한’ 부작용윌로 섀명됩니닀. 심각한 ì•„êž° 걎강 묞제로 읎얎지지 않는닀고 여겚지는 겜향읎 있죠. 하지만, 아Ʞ의 불펞감은 결윔 겜믞하닀고 볌 수 없습니닀.

ì…‹ì§ž, ‘몚든 것을 ë‹€ 알늎 수 없닀’는 녌늬륌 낎섞우Ʞ도 합니닀. 너묎 많은 정볎륌 제공하멎 볎혞자듀읎 혌란슀러워하거나 필수적읞 영양소 섭췚륌 꺌늎 수 있닀는 녌늬로 정볎 제공을 제한하Ʞ도 합니닀. 제가 아묎늬 읎핎하렀 핮도 도묎지 읎핎가 되지 않는 것 쀑 하나가 읎 죌장입니닀. 여러분은 ì–Žë– ì‹ ì§€ 몚륎겠습니닀.

ë„·ì§ž, 업계의 로비와 영향력읎 막강합니닀. 찚후 **[알잠하읎뚞 녌묞 조작 사례]**에서 닀룰 예정읞 것처럌, 분유 업계의 로비와 연구 자ꞈ 지원은 의료 협회 및 전묞가듀의 권고에 알게 몚륎게 영향을 믞칠 수 있습니닀. ‘아Ʞ듀의 빈혈률읎 낮아졌닀’는 결곌가 Ɥ정적 지표로 사용될 수도 있습니닀. 하지만, 동시에 ê·ž 읎멎에 닀륞 부작용읎나 최적화되지 않은 부분읎 숚겚질 수 있습니닀.

ê²°êµ­, 전묞가와 소비자의 입장읎 닀륎고, ê·žë“€ 간의 정볎 격찚가 맀우 큜니닀. 귞렇Ʞ 때묞에 **’귞듀만의 늬귞’**가 졎재하는 것입니닀.


마묎늬하며: 끝나지 않은 띌읎프 믞션

분유가 몚유가 부족하거나 없는 아Ʞ에게 **’생명쀄’**읎 될 수 있닀는 사싀에는 많은 읎듀읎 의견을 같읎합니닀. 하지만 ê·ž ‘생명쀄’읎 왜 최적의 형태가 아니며, ê·ž 한계와 부작용에 대한 정볎가 ì–Žë–€ 읎유로 투명하게 전달되지 않는가에 대한 질묞은 우늬 사회가 풀얎알 할 가장 쀑요한 곌제 쀑 하나입니닀.

읎것은 제 읞생에서 가장 얎렀욎 곌제 쀑 하나읎Ʞ도 합니닀. 얎쩌멎 1996년에 시작된 영화 <Mission: Impossible>처럌 말읎죠. 신Ʞ하게도 읎 영화가 처음 개뎉된 핎와 제 곌제가 시작된 시점읎 겹친닀는 사싀읎 늘 마음에 낚습니닀. 영화 속 죌읞공처럌 저 역시 쉜게 끝낌 수 없는 임묎륌 지니게되었고, 비록 영화는 올핎 8펞을 끝윌로 마지막 시늬슈륌 예고했지만, 저의 띌읎프 믞션은 아직도 계속되고 있습니닀.

ꎀ객 하나 없는 원 올드 우뚌 쇌(One Old Woman Show)음지띌도, 읎 쇌는 계속될 것입니닀.

“The show must go on.” – 프레디 뚞큐늬와 Queen, 에읎슈로 죜음을 앞둔 묎대. 귞듀의 숭고핚곌 엎정을 닮고 싶습니닀.


닀음펞 예고:

“전 몚유륌 뚹읎고 있얎요.” “전 수입 직구륌 통핎, 100% 현지 청정지역 안전ꎀ늬 최상을 자랑하며 생산된 분유륌 아Ʞ에게 죌고 있얎요.” “우늬 애듀은 읎믞 분유 뚹을 Ʞ간을 지낞 성년읎에요.” “아읎고 유난은! 한 200년 삎렀 작정하나 볎군요?” “당신읎 마치 몹쓞 쎈가공식품읎띌 부륎는 분유, 대한믌국에서 2010년 BPA-Free니 뭐니 하Ʞ 전, 위험하닀는 깡통에 든 분유, 플띌슀틱 통에 넣얎 뚹여 킀웠얎도 우늬 집 애듀은 잘만 자랐는데 뭔 소늬죠?”

낎가 분유륌 뚹읎지 않는닀고, 우늬 집 아읎듀읎 분유륌 뚹을 나읎가 지났닀고, 난 ì§§ê³  굵게 딱 100년만 삎 예정읎니 걱정 말띌고, 귞럌 만사 였쌀읎음까요?

지ꞈ까지, 분유의 탄생읎 ‘사랑’에서 출발했을지띌도, 시간읎 지나며 귞것읎 얎떻게 산업의 도구가 되었는지 우늬는 삎펎볎았습니닀.

닀음 펞에서는, 믞국 낎왞 전묞가듀 사읎에서 ‘넘버원 읎랔(Evil) êž°ì—…’윌로 지목되는 몬산토/ 바읎엘 볎닀는 한 수 아래지만, 분유와 영양제 영역에서 깊은 의혹을 불러옚 또 하나의 êž°ì—…, 슀믞띜/에버튞(Similac/Abbott)의 읎알Ʞ륌 읎얎가겠습니닀.

👶 Baby Formula: “Lifeline” or “Rotten Rope”?

Baby formula is often considered an essential ‘lifeline’ for infants. But is it truly so? This article delves into the history of baby formula and profoundly examines the ingredients of modern formula and its hidden controversies. We’ll explore together whether formula is a ‘lifeline’ for babies or a ‘rotten rope’ that needs to be cut. We hope this in-depth analysis helps you make crucial decisions regarding infant health.


The Birth of the World’s First Baby Formula: Germany, 1867

In 1867, German chemist Justus von Liebig developed ‘Liebig’s Perfect Infant Food’. This marked the beginning of the world’s first commercial baby formula. Initially, its main ingredients were flour, milk, malt flour, and potassium bicarbonate. At the time, it was introduced as a nutritional supplement for breastfeeding.

Subsequently, in 1869, a similar product, ‘Leibig’s Soluble Infant Food,’ appeared in the United States. Furthermore, in the 1870s, Swiss Nestlé introduced ‘Nestlé’s Infant Food’. This was the first ‘complete artificial formula’ made solely from ‘milk and cereals’. You can find related information in TIME Magazine and Contemporary Pediatrics Journal.


1867 Formula Ingredients and Agricultural Environment: Past vs. Present

In 1867, the primary ingredient in baby formula was likely ‘raw milk’. At that time, pasteurization technology was not widely used. Although Louis Pasteur developed the technique, its application to dairy products became widespread only after the 1880s. Therefore, the milk in Liebig’s formula would have been a processed form of raw milk.

19th-Century Formula Ingredients: Raw Milk and Skim Milk Powder

Some records mention the use of skim milk powder. This would have been milk with fat separated and then powdered. Currently, in Korea, only pasteurized or sterilized milk is distributed. However, in some parts of Europe and the the United States, consumers can still purchase raw milk to ensure consumer choice. We will cover this in more detail in [History of Raw Milk Choice].

19th-Century Agricultural Environment: Freedom from Chemical Pollution

What about flour and malt? At that time, the concept of ‘organic’ didn’t exist. Nevertheless, the agricultural environment differed from today’s chemical-contaminated practices.

Chemical Pesticides: The widespread use of modern chemical pesticides gained momentum from the late 19th to the 20th century. In the 1860s, some insecticides were used, but their application was very limited. Thus, it was highly unlikely that synthetic pesticides were extensively used on flour or malt.

Chemical Fertilizers: Chemical fertilizers were developed starting in the early 19th century. In the 1860s, industrial production of potassium fertilizers began in Germany. However, mass production of nitrogen fertilizers became possible only after the Haber-Bosch process in the early 20th century. At the time, some inorganic fertilizers might have been used alongside organic ones. Yet, it wasn’t on the scale of today’s pollution. Instead, the role of chemical fertilizers was a subject of debate.

GMO Crops: Genetically modified (GM) crops were developed in the late 20th century with advancements in DNA technology. For instance, the first GM bacteria were developed in 1973. In 1867, the concept of GMO crops didn’t even exist.

In conclusion, the milk in Liebig’s baby formula would have been a processed form of raw milk. Furthermore, the flour and malt, although not organically certified, would have been grains unaffected by modern chemical pesticides or GMOs. Agriculture at that time was much closer to nature than it is today.


The Evolution of American Baby Formula into an ‘Ultra-Processed Food’

From the late 19th to the mid-20th century, American baby formula underwent significant changes. First, in 1853, Gail Borden developed condensed milk. This laid the groundwork for the commercialization of milk products with long shelf lives. You can find this information through Early Learning Nation Foundation research.

In 1928, Alfred Bosworth launched Similac. Then, in 1959, Mead Johnson introduced Enfamil, establishing its place in the market. These developments are discussed in detail in reports like As You Sow corporate reports.

Early Formula and Industrialization: The Dawn of ‘Ultra-Processed Foods’

Food manufacturers claim that baby formula significantly improved nutritionally between the 1940s and 1960s. Notably, advancements in iron fortification, whey protein enrichment, fat blending, and development into dehydrated dairy forms were crucial. Let’s analyze in detail how these changes impacted infant health.

Gail Borden’s development of condensed milk in 1853 was a significant turning point in the industrialization of dairy products. The greatest significance of condensed milk development was its ‘preservation innovation’.

Borden removed water from milk under vacuum, which allowed milk to be safely stored and supplied even without refrigeration, especially in urban areas or as military rations during wartime. However, the role of baby formula as a ‘military ration’ should not be equated with its role as a lifeline for infants who need breast milk.

The beginning of processed foods is closely linked to war. We’ll explain this in more detail in [War and the Food Industry Relationship]. Condensed milk was one of the first mass-produced dairy products artificially processed, deviating from the natural state of raw milk. This spurred the development of powdered formula. Ultimately, it became the foundation for accelerating the processing of the entire food industry.

The Need for Nutritional Fortification: The Shadow of Ultra-Processed Foods

Ultimately, this wide opened ‘the door to ultra-processed foods’. Raw milk naturally provides sufficient nutrients for calves. However, processing can alter or deplete its natural composition. While condensed milk had high concentrations of certain nutrients, feeding it directly to infants could result in excessively high sugar content or deficiencies in other nutrients.

Against this backdrop, the need for nutritional fortification emerged. Mass-produced and long-lasting baby formula struggled to contain all the micronutrients and bioactive substances found in breast milk or raw milk.

Therefore, from the mid-20th century, particularly after the 1950s, attempts to bolster the nutritional completeness of baby formula by adding artificial nutrients (iron, vitamins, minerals, etc.) became widespread. For instance, Similac first introduced iron-fortified formula in 1959 to address infant anemia.

In summary, Gail Borden’s development of condensed milk opened a crucial industrialization phase for processing foods for mass production and distribution, long before the term ‘ultra-processed food’ even existed. This ultimately laid the groundwork for the necessity of artificial nutritional fortification in baby formula.


1959 Similac Inorganic Iron-Fortified Formula and the Truth of Modern Science

1. Iron Form Used in 1959 Similac Iron-Fortified Formula

When Similac first introduced iron-fortified formula in 1959, the primary form of iron used was inorganic iron, such as Ferrous Sulfate. While verifying the exact ingredient list from that time is difficult, Ferrous Sulfate was the most common iron salt used in food fortification after the mid-20th century.

Ferrous Sulfate was widely adopted due to its low cost. However, it also had the drawback of potentially causing digestive discomforts like constipation or gastrointestinal upset.

2. Understanding Scientific Knowledge Then vs. Now

2-1. Understanding Scientific Knowledge (1950s)

Even in the 1950s, the importance of iron and iron deficiency anemia was well-known. However, the understanding of the difference in absorption rates between plant-based iron (non-heme iron) and animal-based iron (heme iron) was far less comprehensive than it is today. Furthermore, there was an inadequate deep understanding of whether infants’ underdeveloped digestive and metabolic systems processed these two forms of iron differently.

Heme Iron vs. Non-Heme Iron Distinction: Heme iron is abundant primarily in animal-based foods like meat and fish and has a high absorption rate (15-35%). In contrast, non-heme iron is found in plant-based foods such as legumes, leafy green vegetables, and grains, and its absorption rate is lower (2-20%). Moreover, non-heme iron’s absorption can be hindered by other food components like phytic acid, polyphenols, and calcium. The differences in heme and non-heme iron absorption mechanisms were clearly elucidated starting in the late 20th century.

Infant Metabolic Specificity: Infants, especially premature or low-birth-weight babies, have digestive systems that differ from adults. Their ability to absorb and regulate iron is immature. At the time, there was low awareness of the potential risks of excessive non-heme iron supply due to these subtle physiological differences. Consequently, a simplistic quantitative approach, “more is better,” was predominant.

2-2. The Truth Revealed by Today’s Latest Research and Data

Current science has a much clearer understanding of not only the absorption mechanisms of heme and non-heme iron but also their effects on infants.

Complexity of Iron Absorption: According to recent studies, infant iron absorption is not solely determined by the amount of iron. It’s complexly regulated by various factors, including the form of iron, non-heme iron absorption-promoting components like Vitamin C, and the infant’s iron status. Specifically, an infant’s gut is more immature than an adult’s, and its ability to regulate the absorption and excretion of certain nutrients may not be perfect.

Risks of Excessive Non-Heme Iron Supply:

Oxidative Stress: When non-heme iron is supplied in excess, it can induce oxidative stress in the gut. Iron can act as a powerful pro-oxidant. Therefore, excessive non-heme iron can damage intestinal cells or lead to an imbalance in the gut microbiota. This can result in increased inflammation, diarrhea, and other gastrointestinal problems (PMC, “Excess iron intake…”, 2017).

Interactions with Other Trace Elements: Excessive iron can interfere with the absorption of other essential trace elements like zinc and copper. This can negatively impact growth and immune function (PMC, 2017 paper).

Potential for Growth and Developmental Impairment: Some studies suggest that supplying excessive inorganic iron to infants who are not iron deficient may lead to growth delays or negative impacts on cognitive and motor development (PMC, 2017 paper).

This may be related to the infant’s immature iron homeostasis regulation ability. Moreover, inorganic iron-fortified formula or ultra-processed foods like cereals can be linked to mitochondrial dysfunction, contributing to mental and metabolic problems in children worldwide. Furthermore, when glyphosate is added to this, the suffering of mitochondria intensifies.


The Truth About Formula Anemia: Did Doctors Really Not Know?

In conclusion, doctors and scientists at the time were not entirely unaware of the causes of infant anemia. In fact, Similac launched iron-fortified formula precisely because they recognized that anemia was a common problem in formula-fed babies.

Peculiarities of American Dairy Farming: Holstein Breed and A1 Beta-Casein

However, a very small number of experts also understood that this was not merely an iron problem. It was an inevitable consequence of the U.S. choice of cattle breeds, factory farming methods, and the prohibition of raw milk.

Unlike the advanced dairy industry in Europe, the U.S. focused on intensively breeding the Holstein cattle, which originated from a natural mutation in Europe approximately 5,000-8,000 years ago, leading to high milk production.

This breed is highly efficient in milk production, bringing significant profits to producers. However, the casein of this Holstein breed is A1 beta-casein. Unfortunately, this A1 beta-casein is directly incorporated not only into milk but also into baby formula, a lifeline for infants.

Studying A1 vs. A2 beta-casein is crucial for a healthy diet, including infant health, adolescents, and the elderly. Not all milk and cheese are the protein and calcium powerhouses that nutritionists often describe. As you continue to learn with me, you’ll be able to decide for yourself which milk and cheese to choose.

In Korea, 99% of dairy cows are Holsteins. Of course, this breed is excellent in milk production, bringing significant profits to businesses. However, the protein of this Holstein breed carries the A1 genetic trait. And unfortunately, this A1 beta-casein is directly incorporated not only into milk but also into baby formula, a lifeline for infants.

The purpose of a company is profit. The greater and clearer consumer demand becomes, the more producers identify market opportunities and invest, leading to change. Consumers might simply be entities that make choices. However, discerning consumers are “agents of change in the world.”

I will explain A2 milk available in Korea in a separate chapter.

US Raw Milk Ban and Changes in Formula Manufacturing

The point at which raw milk distribution was banned in the United States was 1908. Specifically, the city of Chicago was the first in the U.S. to prohibit the sale of raw milk and permit only pasteurized milk. Subsequently, laws mandating pasteurized milk spread nationwide in the 1920s and 1930s.

The U.S. federal government began promoting nationwide bans or strict regulations on raw milk distribution from the late 1940s onwards, as a public health measure.

Therefore, the milk used in baby formula manufacturing in the U.S. in the 1950s was 100% pasteurized or high-temperature short-time (HTST) processed milk. In conclusion, raw milk could not have been used in Similac formula marketed in 1959. It is logically and politically clear that milk processed at least once with high-temperature pasteurization was used.

During high-temperature pasteurization (UHT, HTST), milk proteins are partially or completely denatured. Baby formula made from such denatured milk proteins is likely to have reduced nutritional bioavailability. Specifically, the absorption rate of minerals like iron, calcium, and zinc decreases.

It’s highly probable that proteins already damaged once by pasteurization/sterilization underwent a second heat denaturation during the formula manufacturing process (e.g., spray drying).

Most baby formulas other than Similac were likely low-nutritional-quality, double-heated formulas. This is why reports related to reduced bioavailability of micronutrients flooded in subsequently.


Early Similac Reports and Iron/Mineral Issues (1960-70s)

From the 1960s to the early 1970s, cases of anemia, iron deficiency, zinc deficiency, and growth retardation were reported in infants using Similac. One of the causes identified was reduced absorption rates of heat-denatured proteins and minerals. Consequently, Similac subsequently launched improved products, including iron-fortified formula, additional zinc, and enhanced linoleic acid and DHA.

Complex Causes of Infant Anemia in the 1950s

Let’s focus on why babies fed baby formula in the 1950s suffered from anemia.

First, the iron content of original formula was low. Early baby formula, before artificial iron fortification, had lower iron content than breast milk or regular milk.

Second, iron absorption was lower compared to breast milk. Although the amount of iron in breast milk is small, its absorption rate is very high (about 50%) due to special components like lactoferrin. In contrast, the non-heme iron used in inorganic iron-fortified formula at the time had a much lower absorption rate (estimated at 3-4%).

Third, early weaning and inappropriate complementary feeding practices exacerbated anemia. At the time, infants were often introduced to difficult-to-digest regular pasteurized or sterilized milk too early, or complementary foods focused on grains that were low in iron.

Specifically, pasteurized or sterilized milk from Holstein cows with the A1 protein genotype can not only have low iron content but also induce microscopic blood loss in an infant’s intestines, further worsening anemia (MedlinePlus Medical Encyclopedia).

Fourth, depletion of iron stores was also crucial. Infants consume iron stores received from their mothers at birth (maintained for about 4-6 months after birth) and then need to supplement iron from external food. If they don’t receive enough iron from baby formula or complementary foods, they become vulnerable to anemia.

The Truth Scientists Missed Then: Subtle Effects of Micronutrients

What did doctors and scientists at the time not know (or not fully understand)?

Lack of Deep Understanding of Heme vs. Non-Heme Iron Absorption Differences: In-depth research results on the fundamental bioavailability differences between these two and the specificities of infant metabolism only began to accumulate in the late 20th century. Before that, there was a tendency to approach ‘iron’ as a single concept.

Potential Side Effects of Excessive Inorganic Iron: While the risks of iron deficiency were recognized, data on the potential negative effects of unnecessary excessive inorganic iron supply on infant gut health, microbiota, absorption of other trace elements, and even development were very limited. Consequently, the prevailing notion was that since iron is an essential nutrient, ‘the more, the better’.

Complex Protective Mechanisms of Breast Milk: The understanding that breast milk is not merely a source of nutrition but also contains complex bioactive components (like lactoferrin) that protect the infant’s immature digestive and immune systems and optimize iron absorption was limited. Therefore, baby formula struggled to mimic these complex protective mechanisms.

In conclusion, scientists in the 1950s did their best to address infant anemia given the knowledge of their time. However, their knowledge was relatively early-stage compared to the vast information accumulated by modern nutrition and physiology. Specifically, their understanding of the subtle metabolic processes of micronutrients and the potential risks of excessive inorganic iron supply was limited.


2025 Formula’s Inorganic Iron: A Loss of Common Sense?

1. So, What Are the Iron Ingredients in Our Babies’ Formula Today?

Today, most commercial infant formulas are sold as iron-fortified. Since Similac’s first attempt in 1959, iron fortification has become a global standard for preventing infant iron deficiency anemia. And the form of iron used in baby formula today remains inorganic iron.

The following compounds are commonly used:

Ferrous Sulfate: This is the most commonly used form. It is inexpensive and has a relatively high bioavailability compared to other inorganic iron forms. However, it can cause gastrointestinal upset such as constipation, nausea, and black stools.

Ferrous Gluconate: This is known to cause less gastrointestinal upset than ferrous sulfate and is sometimes used in some baby formulas.

Ferrous Fumarate: This form is relatively stable and has a high iron content.

Elemental Iron: This is a pure iron form, sometimes used in specific manufacturing processes.

Most infant formulas are formulated to contain 4-12 mg of inorganic iron per liter. This is to meet the iron intake needs of infants after 4-6 months of age. Therefore, major organizations such as the American Academy of Pediatrics (AAP) and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) continue to recommend the use of inorganic iron-fortified formula.

Ferrous sulfate, ferrous gluconate, ferrous fumarate, and elemental iron are widely used not only in baby formula but also in adult iron supplements. These are all inorganic iron (non-heme iron) and, when consumed in excess, can cause intestinal inflammation, reduced absorption, and oxidative stress.

And unfortunately, these inorganic iron preparations, such as ferrous sulfate, ferrous gluconate, and ferrous fumarate, are still manufactured as pharmaceuticals and prescribed by doctors to patients with anemia or iron deficiency.

This is primarily due to cost, insurance coverage, existing practices, and a conservative clinical environment, and the risks highlighted by recent studies or better alternatives (e.g., heme iron, amino acid chelated iron) are not yet sufficiently reflected in medical practice.

2. Criticism that ‘Plant-Derived Inorganic Iron is Not Helpful’ and AAP’s Response

Modern nutrition clearly recognizes that the absorption rate of non-heme iron (including plant-derived inorganic iron) is significantly lower than that of heme iron. Furthermore, it is well known that there can be potential side effects with excessive supply.

Despite this criticism, the American Academy of Pediatrics (AAP) continues to recommend inorganic iron-based iron-fortified formula for several complex reasons. (The Korean Pediatric Society adopts the guidelines of the U.S. and Europe.)

First, it’s due to practicality and cost-effectiveness. Heme iron has a high absorption rate but is very expensive to produce and has limitations as an animal-derived ingredient. Therefore, using heme iron in mass-produced baby formula is currently difficult economically and practically.

In contrast, inorganic iron like ferrous sulfate is very cheap and easy to mass-produce and supply. Given the need for stable supply in baby formula, cost-effectiveness is an important consideration for manufacturers.

Moreover, inorganic iron excels in stability and ease of storage. Inorganic iron has superior oxidative stability compared to heme iron, making it advantageous for long-term storage and distribution. Furthermore, it causes fewer interaction problems with other nutrients in the baby formula manufacturing process.

Second, it’s a public health strategy of supplying ‘sufficient quantities’. The argument is that even if the absorption rate is low, adding a sufficient amount of inorganic iron to baby formula ensures that infants receive the minimum necessary iron intake. The AAP claims that this ‘fortification’ has shown practical effects in preventing anemia in various studies.

Third, ‘risk-benefit’ assessment is crucial. The AAP recognizes the potential risks of inorganic iron-fortified formula (e.g., oxidative stress or gut microbial imbalance due to excessive iron). Nevertheless, they tend to believe that preventing iron deficiency anemia, which can cause severe developmental delays and cognitive impairment, is a greater benefit.

However, there are numerous studies that demonstrate how out of touch these claims are with modern science.

Here are some of those papers:

[Karamantziani T. et al. (2024) Children (Basel) Systematic Review and Meta-analysis]: Oral iron supplementation in infants causes an approximate 10% reduction in beneficial bacteria (Bifidobacteria) and leads to gut dysbiosis. (Europe PMC, PubMed, MDPI, etc.)

[Paganini D. & Zimmermann MB (2017) Am J Clin Nutr for Infants and Children]: Iron supplementation (MNPs/iron preparations) increases the incidence of diarrhea and enteritis, reduces beneficial gut bacteria, and promotes pathogen proliferation and inflammation. (arXiv, PubMed, ResearchGate, etc.)

[Finlayson-Trick EC et al. (2020) Gastrointestinal Disorders Review]: Iron supplementation increases intestinal oxidative stress and promotes pathogenic bacterial growth due to low absorption. Consequently, there is a concern for increased pediatric inflammatory diseases and infections. (PMC, MDPI, Frontiers, etc.)

[Preterm Infant Study (Preliminary, University of Nebraska) Tracking 14 premature infants]: After initial iron administration, an overgrowth of pathogenic bacteria like E. coli and increased ROS were observed. (PubMed, MDPI, American Chemical Society Publications, etc.)

“Potential adverse effects of iron supplementation in developing countries” (Journal of Nutrition, 2007): Raises concerns about the side effects of excessive iron, particularly discussing the risks of over-supplying iron to children who are not iron deficient.


Formula: ‘Not a Medicine’, but ‘Beyond an Ultra-Processed Food’?

The classification of baby formula as a ‘food’ rather than a ‘medicine’ creates regulatory loopholes. As it falls under a similar regulatory system to protein powders or some health supplements, it raises the following issues:

Limits of Safety Verification and Hidden Harmful Substances

Firstly, there are clear limitations in safety verification. Pharmaceutical products must undergo strict clinical trials and meet GMP (Good Manufacturing Practice) standards before release.

However, baby formula, adhering to food standards, is not subject to such rigorous verification. A major concern is the inadequate testing for residual pesticides like glyphosate, microplastics, PFAS (per- and polyfluoroalkyl substances), and other new harmful substances.

Supporting Data: According to a Nongmin Shinmun report in May 2025, glyphosate is either missing from or, more accurately, included in the inspection list for imported agricultural products (including formula ingredients) by the Korea Ministry of Food and Drug Safety, but is not actually being tested.

EFSA (European Food Safety Authority) regularly monitors glyphosate in infant foods in the EU. However, domestic verification for products exported to Korea remains opaque.

Lack of Ingredient Transparency and Criticism of the ‘GRAS’ Concept

Secondly, there is a lack of ingredient transparency. There’s a strong reliance on manufacturers’ ‘pure declarations’. As a result, consumers find it difficult to obtain transparent information on product origin, processing methods, and all additives. In particular, concepts like ‘Generally Recognized As Safe (GRAS)’ are often criticized as they depend heavily on the manufacturer’s self-assessment.


A Baby’s Life on the Line: Is it a ‘Lifeline’ or a ‘Rotten Rope’?

Baby formula is inherently an Ultra-Processed Food (UPF), highly processed to substitute breast milk. It undergoes complex manufacturing processes and includes various additives (artificial vitamins, minerals, emulsifiers, stabilizers, etc.), making it far removed from natural foods.

The Illusion of ‘BPA-free’ and the Risks of Plastic Containers

Often, “BPA-free” labeled baby bottles and plastic containers are considered safe, but the labeling itself can be another illusion.

Many products, like formula, appear to be in aluminum cans, but their interiors are coated with BPA-free plastic. This ultra-processed formula is then stored for long periods in these containers.

Ultimately, babies are in a system where they consume ultra-processed formula from seemingly metal containers, which are, in fact, “BPA-free-unreliable plastic,” via plastic bottles and nipples. This leads to a precarious tightrope walk of micro/nanoplastic exposure.

In short, the problem with processed foods isn’t just their contents. The packaging, especially marketing labels like “BPA-free,” is merely an illusion and a claim by manufacturers, not a scientific standard guaranteeing safety.

In fact, numerous studies published since 2015 indicate that some alternative bisphenols used as BPA substitutes, such as BPF, BPS, and BPB, are equally or even more dangerous than BPA in causing hormone disruption, liver dysfunction, and nervous system disorders.

Consequently, developed European countries are including these in their regulatory scope. France has completely banned BPA-containing cans and is progressively banning BPS and BPF as well.


The ‘Era of Lost Common Sense’: Where Are We Headed Now?

2025, Unanswered Questions Persist

Currently, in 2025, scientific and nutritional knowledge has advanced far beyond what was available in the 1950s. So why is inorganic iron still used in baby formula, and why isn’t sufficient information about its potential side effects adequately communicated to baby caregivers?

Furthermore, why does the practice of distributing essential food for infant health—precious meals—in plastic containers continue, or even expand? Who are those in South Korea who, under the lenient “BPA-Free” law, open our wallets for products containing BPA substitutes that other countries prohibit for their own citizens?

It’s disheartening, but this isn’t simply a matter of wasted money or ‘ignorance’. Rather, it’s a complex issue intertwined with economic, industrial, and systemic factors. It is, quite literally, the ‘Era of Lost Common Sense,’ an ‘Era where Shamelessness Prevails.’

Knowing all these facts, would they truly buy such baby formula for their own children and feed it to them in plastic bottles labeled ‘BPA-free’ with a false sense of security? When their children grow a bit older, would they pull out instant rice cooked with special methods that lasts for six months, claiming “slow aging is better the sooner it starts, and protein is paramount”?

Locally grown rice without organic certification, glyphosate that’s on the inspection list but mostly unchecked, and lentils grown in distant lands and arriving in cans—all this might be heated in a microwave with the plastic lid opened before being served on the table.

Is that a peaceful daily life, or practice for eating military rations? However, that’s not an area I can intervene in. Because from that moment on, it’s not a matter of science or information; it’s a belief system.

We are done lamenting this “Era of Lost Common Sense.” It’s time to turn lament into resolve. We can change it. No, we must change it now. If you’ve ever, due to lack of information or lack of parent education, believed you were feeding your child something good—like milk from cows raised on GMO crops and glyphosate, sterilized A1 protein milk, processed with special methods into formula—without knowing about “inorganic iron” or other artificial nutrients, merely relying on figures on the formula can, believing it to be beneficial for infant health—

Now is the time for change. You didn’t know then, but now you do—so from now on, translate common sense into action.

Knowing all this, would you still buy the same baby formula for your grandchildren that you once fed your children?

Would you truly feel at ease feeding it daily in a plastic bottle labeled ‘BPA-free’?

If your grown children say, “I can’t help it, I’m busy,” and buy large quantities of instant rice that lasts six months, claiming it’s for “slow aging diets” because they heard and saw it somewhere, would you just watch?

As grandparents, would you really chase after the illusion of slow aging by relying on instant rice, protein bars, and protein powder for your daily meals, instead of preparing a proper table, just to live an easy old age?

It’s simply not right to pass on polluted land, water, and air to our grandchildren—pollution that they will never finish cleaning up—instead of wealth that would last them a lifetime.

Hold your baby’s tiny hand tightly. Until now, we didn’t know, and we had no choice but to pass on such things to our babies. But if we know now and still look away or repeat the same actions…

ISCC Plus Certification: Is it for Human Health?

Is ISCC Plus an certification that evaluates the harm of human health or endocrine disrupting substances?

The answer is, unequivocally, no. ISCC Plus (International Sustainability and Carbon Certification Plus) is an international non-profit certification body headquartered in Germany. It verifies supply chain transparency, sustainability, and carbon footprint reduction when using biomass-based plastics or recyclable resources.

However, it does not evaluate human exposure, toxicity testing, effects on gut microbiota, or fetal health during pregnancy regarding Endocrine Disrupting Chemicals (EDCs).

Therefore, receiving ISCC Plus certification absolutely does not mean ‘it’s harmless to humans’ or ‘it’s safe for pregnant women or infants’.

The Illusion of ‘25% Carbon Footprint Reduction’

The figure of “25% carbon footprint reduction” typically means that greenhouse gas emissions from plastic production, transportation, and disposal processes have been reduced by a certain amount compared to existing levels.

However, the total environmental or health impact of the entire instant rice system (including plastic production, content processing, sealing, microwave heating, and distribution network) is only improved by 25% of the total 100%, with the remaining 75% still posing a substantial challenge.

An approach that only reduces the carbon footprint cannot truly transform into an ‘environmentally healthy diet’ or a ‘slow aging diet’.

Furthermore, instant rice itself qualifies as an ultra-processed food, and presents various risk factors:

  • Unnatural packaging (plastic)
  • Unlabeled antioxidants, lubricants, coatings
  • Concerns about glyphosate residue
  • Destroyed starch structure and rapid blood sugar spike
  • Release of trace amounts of microplastics or volatile organic compounds (VOCs)

These factors can lead to accelerated aging instead of delayed aging, metabolic diseases, endocrine disruption, etc., making it truly awkward to categorize them as a ‘slow aging diet’.

Summary of ISCC Plus and Instant Rice

In summary, ISCC Plus certification focuses only on ‘some aspects of environmental sustainability (carbon neutrality)’ and does not include human health, potential for endocrine disruption, or long-term safety assessments. Therefore, instant rice contained in such plastic containers cannot be called a ‘slow aging diet’.

Ultimately, to genuinely reduce the carbon footprint, the most fundamental solution is to reduce the consumption of ultra-processed foods, including instant rice, itself.

Reference: Understanding Starch and Glycemic Response

1. Starch Structure and Digestion Rate Change: Native Starch vs. Gelatinized vs. Retrograded

Freshly cooked rice at home contains ‘gelatinized starch’, but instant rice undergoes complex processes of reheating, drying, packaging, and reheating again, which destroys the starch structure.

Starch gelatinizes during cooking, and the subsequent cooling to reheating process induces starch retrogradation. However, in instant rice or reheated rice, resistant starch decreases, and rapidly digestible starch (RDS) increases. This is why it rapidly raises blood sugar.

2. Scientific Research Basis

(1) Glycemic Index (GI) Research

(2) Starch Structure Change Research ([FAO/WHO], 1998)

“Starches subjected to processing such as high-heat or pressure cooking, drying, and rehydration tend to show increased glycemic responses due to altered granule structures.”

Meaning: Starches that undergo high heat, drying, and rehydration show increased glycemic responses.

(3) Study on Glycemic Index Change in Industrialized Foods (2015, [British Journal of Nutrition])

Instant foods were found to have faster digestibility and higher blood sugar spikes than before cooking.

3. Summary of Structural Reasons Why Instant Rice Raises Blood Sugar More

CategoryStructureDigestion SpeedBlood Sugar Response
Freshly Cooked RiceStarch is gelatinized; some resistant starch is present.MediumNormal
Instant Rice (Reheated)Repeated heating and packaging breaks down starch easily.FastHigh

4. Discrepancy in Perception within Korean Healthcare

In Korea, instant rice is often still equated with regular rice or marketed as a healthier option, implying greater hygiene. However, this differs from the international food science understanding of GI research and starch changes.

Instant rice is not simply ‘more hygienic’ or ‘convenient’ than freshly cooked rice. Its altered starch structure can raise blood sugar more rapidly, requiring caution, especially for patients with diabetes, metabolic syndrome, or insulin resistance. This fact has been repeatedly proven in dozens of international academic studies.

Information Insufficiency on Side Effects and ‘Their Own League’

Returning to the topic of inorganic iron in baby formula. The insufficient communication to caregivers about the potential side effects of inorganic iron – namely, constipation, gastrointestinal upset, gut microbial imbalance, and oxidative stress – is a very serious issue affecting infant health. This lack of information can occur for the following reasons:

First, information asymmetry exists. Medical professionals and manufacturers are aware of potential side effects through relevant research. However, actively informing consumers could negatively impact product sales.

Second, there’s a tendency to dismiss them as ‘minor side effects’. Constipation or black stools are often described as ‘temporary and mild’ side effects. There’s a tendency to believe they won’t lead to serious infant health problems. However, discomfort in an infant can never be considered minor.

Third, they may argue, ‘we can’t disclose everything’. Information provision is sometimes restricted with the argument that providing too much information might confuse caregivers or deter them from essential nutrient intake. This is one of the claims I find utterly incomprehensible, no matter how hard I try to understand. I wonder what you think.

Fourth, industry lobbying and influence are powerful. As we will discuss later in [Alzheimer’s Paper Fabrication Cases], lobbying and research funding from the baby formula industry can subtly influence the recommendations of medical associations and experts.

While a reduction in ‘infant anemia rates’ is certainly used as a positive indicator, other side effects or suboptimal aspects might be hidden beneath the surface.

Ultimately, the perspectives of experts and consumers differ, and the information gap between them is very significant. This is precisely why ‘their own league’ exists.


Conclusion: The Unfinished Life Mission

Many agree that baby formula can be a ‘lifeline’ for infants when breast milk is insufficient or unavailable. However, the question of why this ‘lifeline’ is still not in its optimal form, and why information about its limitations and side effects is not transparently communicated, remains one of the most critical challenges our society must address.

This is also one of the most important challenges in my life. Perhaps like the movie

Even if it’s a One Old Woman Show with no audience, this show must go on. “The show must go on.” – Freddie Mercury and Queen, on stage facing death from AIDS. I want to emulate their nobility and passion.

Next Episode Preview: Beyond “Lifeline” and “Rotten Rope”

“I’m breastfeeding.”

“I’m importing directly and giving my baby formula produced with optimal safety management in a 100% pristine local area.”

“My kids are already adults past the formula-feeding stage.” “Oh, such a fuss! Are you planning to live 200 years?”

“You call baby formula a terrible ultra-processed food, but my kids grew up just fine even when they drank formula from those supposedly dangerous cans and plastic containers before South Korea even talked about BPA-Free in 2010, so what are you talking about?”

If I don’t feed formula, if my kids are past the age for formula, if I’m only planning to live a short, intense 100 years, so don’t worry—would that make everything okay?

Did I really talk so extensively about cows, milk, and baby formula just to discuss baby formula? So far, we’ve examined how the birth of baby formula, though perhaps rooted in ‘love,’ evolved into a tool of industry over time.

In the next installment, we will continue the story of Similac/Abbott, another company that has raised deep suspicions in the realms of formula and supplements, though perhaps a step below Monsanto/Bayer, which is often labeled the ‘number one evil’ corporation by experts both inside and outside the United States.



日本語

🍌 粉ミルク「呜綱」それずも「腐った呜綱」

粉ミルクは、赀ちゃんにずっお䞍可欠な「呜綱」ず芋なされがちです。しかし、本圓にそうでしょうかこの蚘事では、粉ミルクの歎史を振り返り、珟代の粉ミルクの成分ず隠された論争に぀いお深く掘り䞋げたす。粉ミルクが赀ちゃんにずっお「呜綱」なのか、それずも断ち切るべき「腐った呜綱」なのかを共に考えおいきたす。この詳现な分析が、赀ちゃんの健康に関する重芁な意思決定に圹立぀こずを願っおいたす。


䞖界初の粉ミルク誕生1867幎ドむツでの始たり

1867幎、ドむツの化孊者ナストゥス・フォン・リヌビッヒは**「Liebig’s Perfect Infant Food」**を開発したした。これが䞖界で初めお商業化された粉ミルクの始たりです。圓初は小麊粉、牛乳、麊芜粉、炭酞氎玠カリりムが䞻成分でした。圓時は母乳を補完する栄逊食ずしお提䟛されたした。

続いお1869幎には、アメリカで同様の「Leibig’s Soluble Infant Food」が登堎したした。さらに1870幎代には、スむスのネスレが**「Nestlé’s Infant Food」**を発衚したした。これは「牛乳ずシリアル」のみで䜜られた最初の「完党人工粉ミルク」でした。関連情報はTIME誌やContemporary Pediatrics孊術誌で確認できたす。


1867幎の粉ミルク原料ず蟲業環境過去ず珟圚の違い

1867幎、粉ミルクの䞻芁原料は「生乳」であった可胜性が高いです。圓時は䜎枩殺菌技術が広く䜿われおいなかったからです。ルむ・パスツヌルが技術を開発したしたが、乳補品ぞの適甚は1880幎代以降でした。したがっお、リヌビッヒの粉ミルクの牛乳は、生乳を加工した圢であったず思われたす。

19䞖玀の粉ミルク原料生乳ず脱脂粉乳

䞀郚の蚘録では脱脂粉乳の䜿甚も蚀及されおいたす。これは脂肪を分離しお粉末化した圢だったでしょう。珟圚、韓囜では殺菌たたは滅菌された牛乳のみが流通しおいたす。しかし、ペヌロッパやアメリカの䞀郚では、消費者の遞択暩保障のため生乳の賌入が可胜です。これに぀いおは**[生乳遞択暩の歎史]**で詳しく扱いたす。

19䞖玀の蟲業環境化孊汚染からの自由

小麊粉ず麊芜はどうだったでしょうか圓時は「有機」ずいう抂念はありたせんでした。それでも、珟代の化孊汚染された蟲業環境ずは異なっおいたした。

化孊蟲薬 珟代的な化孊蟲薬の倧量䜿甚は19䞖玀埌半から20䞖玀にかけお本栌化したした。1860幎代には䞀郚の殺虫剀が䜿われおいたしたが、䜿甚は非垞に限定的でした。したがっお、小麊粉や麊芜に合成蟲薬が倧量に䜿われた可胜性はほずんどありたせんでした。

化孊肥料 化孊肥料は19䞖玀初頭から開発されたした。1860幎代のドむツではカリりム肥料の工業生産が始たりたした。しかし、窒玠肥料の倧量生産は20䞖玀初頭のハヌバヌ・ボッシュ法以降に可胜になりたした。圓時は有機質肥料ず共に䞀郚の無機肥料が䜿われたかもしれたせんが、今日のような倧芏暡な汚染ではありたせんでした。むしろ、化孊肥料の圹割が議論されおいた時期でした。

GMO䜜物 遺䌝子組み換えGM䜜物は20䞖玀埌半のDNA技術発展ず共に開発されたした。䟋えば、最初のGMバクテリアは1973幎に開発されたした。1867幎にはGMO䜜物ずいう抂念自䜓が存圚したせんでした。

結論ずしお、リヌビッヒの粉ミルクの原料である牛乳は生乳を加工した圢であったず思われたす。たた、小麊粉ず麊芜は、有機認蚌はなかったものの、珟代の化孊蟲薬やGMOの圱響を受けおいない穀物であったず思われたす。圓時の蟲業は珟圚よりもはるかに自然に近いものでした。


アメリカの粉ミルクの発展ず「超加工食品」ぞの進化

19䞖玀埌半から20䞖玀半ばにかけお、アメリカの粉ミルクは倧きく倉化したした。たず1853幎、ゲむル・ボヌデンは濃瞮牛乳を開発したした。これは長期保存可胜な牛乳補品の商業化の基盀を築きたした。Early Learning Nation財団の研究でこれを確認できたす。

1928幎には、アルフレッド・ボスワヌスがSimilacを発売したした。そしお1959幎、ミヌド・ゞョン゜ンがEnfamilを発売し、垂堎での地䜍を確立したした。この過皋はAs You Sow䌁業報告曞などで詳しく取り䞊げられおいたす。

初期粉ミルクず産業化「超加工食品」の始たり

食品業界の専門家たちは、1940幎代から1960幎代にかけお粉ミルクが栄逊孊的に倧きく改善されたず䞻匵しおいたす。特に、鉄分匷化、ポむタンパク質匷化、脂肪配合、そしお脱氎乳補品ぞの発展が重芁でした。これらの倉化が赀ちゃんの健康にどのような圱響を䞎えたか、詳しく分析しおみたしょう。

1853幎のゲむル・ボヌデンの濃瞮牛乳開発は、乳補品産業化の重芁な転換点でした。濃瞮牛乳開発の最倧の意味は「保存性の革新」です。ボヌデンは牛乳の氎分を真空状態で陀去したした。これにより、冷蔵斜蚭がなかった圓時でも牛乳を安党に長期間保存し、䟛絊するこずが可胜になりたした。

特に広倧な領土を持぀アメリカのような囜では、そしお戊争䞭の軍隊の食料ずしお、濃瞮牛乳は重芁な圹割を果たしおきたした。しかし、このような「軍隊の食料」ずしおの粉ミルクず、赀ちゃんの呜を぀なぐ手段ずしおの粉ミルクは、その存圚理由から異なりたす。この点は難なく理解できるでしょう。

加工食品の始たりは戊争ず密接な関係がありたす。これに぀いおは**[戊争ず食品産業の関係]で詳しく説明したす。濃瞮牛乳は、生乳の自然な状態から逞脱し、人為的に加工された最初の倧量生産乳補品の䞀぀でした。そしお、これは粉末状の粉ミルク開発を促進したした。最終的には食品産業党䜓の加工食品化**を加速させる基盀ずなりたした。

栄逊匷化の必芁性超加工食品の圱

結局、これがたさに**「超加工食品ぞの扉」**を倧きく開きたした。生乳は仔牛に必芁な自然の栄逊分を十分に提䟛したす。しかし、加工過皋を経るこずで、自然な成分構成が倉質したり倱われたりする可胜性がありたす。濃瞮牛乳は特定の栄逊玠濃床が高かったものの、乳幌児に盎接䞎えるず糖分が過剰になったり、他の栄逊玠が䞍足したりする可胜性がありたした。

このような背景の䞭で、栄逊匷化の必芁性が浮䞊したした。倧量生産ず長期保存のために加工された粉ミルクは、母乳や生乳が提䟛するあらゆる埮量栄逊玠や生䜓掻性物質を党お含めるこずは困難でした。そのため、20䞖玀半ば、特に1950幎代以降から、人工的な栄逊物質鉄分、ビタミン、ミネラルなどを添加しお粉ミルクの栄逊孊的完党性を補匷する詊みが本栌化したした。䟋えば、Similacは1959幎に鉄分匷化粉ミルクを初めお発売し、乳児貧血問題の解決を図りたした。

たずめるず、ゲむル・ボヌデンの濃瞮牛乳開発は、「超加工食品」ずいう蚀葉が生たれるはるか前から、食品を倧量生産および流通に適した圢に加工する重芁な産業化段階を開きたした。これは最終的に、粉ミルクに人工的な栄逊匷化を必芁ずする背景ずなったず蚀えるでしょう。


1959幎Similac無機鉄分匷化粉ミルクず珟代科孊の真実

1. 1959幎Similac鉄分匷化粉ミルクに䜿甚された鉄分の圢態

1959幎にSimilacが鉄分匷化粉ミルクを初めお発売した際、䞻に䜿甚された鉄分の圢態は**硫酞第䞀鉄(Ferrous Sulfate)**のような無機鉄でした。圓時の成分衚の確認は困難ですが、20䞖玀半ば以降、食品匷化に最も䞀般的に䜿甚された鉄塩は硫酞第䞀鉄でした。

硫酞第䞀鉄はコストが䜎いため広く利甚されたした。しかし、䟿秘や吐き気などの消化噚系の䞍快感を匕き起こす可胜性のある欠点もありたした。

2. 圓時の科孊レベルの理解ず今日の芖点

2-1. 圓時の科孊レベルの理解1950幎代

1950幎代においおも、鉄分の重芁性ず鉄欠乏性貧血はよく知られおいたした。しかし、怍物由来の鉄分非ヘム鉄ず動物由来の鉄分ヘム鉄の吞収率の違いに関する理解は、今日よりもはるかに䞍足しおいたした。たた、赀ちゃんの未発達な消化および代謝システムがこれら2぀の鉄分の圢態を異なる方法で凊理するかどうかに぀いおも、深い理解は䞍十分でした。

ヘム鉄ず非ヘム鉄の区別 ヘム鉄は䞻に肉類、魚などの動物性食品に豊富に含たれ、吞収率が高いです15-35%。䞀方、非ヘム鉄は豆類、緑葉野菜、穀物などの怍物性食品に存圚し、吞収率が䜎いです2-20%。さらに、非ヘム鉄はフィチン酞、ポリフェノヌル、カルシりムなどの他の食品成分によっお吞収が阻害されるこずがありたす。ヘム鉄ず非ヘム鉄の吞収メカニズムの違いは、20䞖玀埌半から明確に解明されたした。

乳児代謝の特殊性 乳児、特に未熟児や䜎出生䜓重児の消化システムは成人ずは異なりたす。鉄分の吞収ず調節胜力が未熟であるずいう特城がありたす。圓時は、このような埮劙な生理孊的違いによる非ヘム鉄の過剰䟛絊の朜圚的リスクに察する認識が䜎かったのです。結果ずしお、「倚く䞎えるのが良い」ずいう単玔な量的アプロヌチが䞻流でした。

2-2. 今日の最新論文・資料が語る真実

珟圚の科孊は、ヘム鉄ず非ヘム鉄の吞収メカニズムはもちろん、乳児に䞎える圱響に぀いお、はるかに明確に理解しおいたす。

鉄分吞収の耇雑性 最新の研究によるず、乳児の鉄分吞収は単に鉄分の量だけに巊右されるわけではありたせん。鉄分の圢態、ビタミンCのような非ヘム鉄吞収促進成分、そしお乳児の鉄分状態など、様々な芁因によっお耇合的に調節されたす。特に、乳児の腞は成人よりも未熟であり、特定の栄逊玠の吞収ず排泄の調節胜力が完璧でない可胜性がありたす。

非ヘム鉄過剰䟛絊の危険性

酞化ストレス 非ヘム鉄が過剰に䟛絊されるず、腞内で酞化ストレスを匕き起こす可胜性がありたす。鉄分は匷力な酞化促進剀ずしお䜜甚するこずがありたす。そのため、過剰な非ヘム鉄は腞现胞に損傷を䞎えたり、腞内现菌叢の䞍均衡を招いたりする可胜性がありたす。これは炎症の増加や䞋痢などの消化噚系の問題に぀ながるこずがありたすPMC, “Excess iron intake…”, 2017。

他の埮量元玠ずの盞互䜜甚 過剰な鉄分は、亜鉛や銅のような他の必須埮量元玠の吞収を劚げる可胜性がありたす。これは成長や免疫機胜に悪圱響を䞎える可胜性がありたすPMC, 2017幎の論文。

成長および発達阻害の可胜性 䞀郚の研究では、鉄欠乏のない乳児に過剰な無機鉄を䟛絊した堎合、成長遅延や認知および運動発達に悪圱響を䞎える可胜性を瀺唆しおいたすPMC, 2017幎の論文。これは乳児の未熟な鉄恒垞性調節胜力に関連しおいる可胜性がありたす。さらに、無機鉄分匷化粉ミルクやシリアルなどの超加工食品は、ミトコンドリア機胜障害ず関連しおおり、䞖界䞭の子䟛たちの粟神的な問題や代謝の問題に寄䞎する可胜性がありたす。加えお、これにグリホサヌトが加わるず、ミトコンドリアの受難はさらに深刻になりたす。


粉ミルク貧血の真実圓時の医垫たちは本圓に知らなかったのか

結論から蚀えば、圓時の医垫や科孊者たちが乳児貧血の原因を党く知らなかったわけではありたせん。実際、粉ミルクを摂取する赀ちゃんに貧血が䞀般的な問題であるこずを認識しおいたからこそ、Similacは鉄分匷化粉ミルクを発売したのです。

アメリカ酪蟲の特殊性ホルスタむン皮ずA1ベヌタカれむン

しかし、ごく䞀郚の専門家は、これが単なる鉄分の問題ではないこずも知っおいたした。これは、アメリカの牛の品皮遞択、工堎匏飌育方法、そしお生乳の犁止がもたらした必然的な結果でした。

ペヌロッパの先進酪蟲業界ずは異なり、アメリカは乳量増加のため、玄50008000幎前にペヌロッパで自然突然倉異により生たれたホルスタむン(Holstein)皮を重点的に繁殖させたした。この品皮は牛乳生産量においお非垞に優れおおり、業者に倧きな利益をもたらしたした。

しかし、このホルスタむン皮のタンパク質はA1遺䌝子型を持っおいたす。そしお残念ながら、このA1ベヌタカれむンは牛乳だけでなく、赀ちゃんの呜綱である粉ミルクにもそのたた含たれるこずになりたす。

A1ずA2ベヌタカれむンbeta-カれむンに぀いお孊ぶこずは、赀ちゃんの健康を含め、青少幎や高霢者の健康な食卓にずっお重芁です。すべおの牛乳やチヌズが栄逊孊で蚀われるようなタンパク質ずカルシりムの宝庫であるわけではありたせん。今埌、私ず䞀緒に孊び続けるこずで、どのような牛乳やチヌズを遞ぶべきかを自分で刀断できるようになるでしょう。

そしお、韓囜でもA2ベヌタカれむン牛乳に出䌚えるようになったず聞きたした。䌁業の目的は利益です。消費者の倉化する芁求が倧きく明確であればあるほど、生産者は垂堎機䌚を捉えお倉化し、投資したす。消費者は単に遞択する存圚であるかもしれたせん。しかし、賢い消費者は「䞖界を倉える存圚」なのです。

韓囜で入手できるA2牛乳に぀いおは、別の章で改めお説明したす。

アメリカにおける生乳流通犁止ず粉ミルク補造過皋の倉化

アメリカで生乳raw milkの流通が犁止されたのは1908幎です。特にシカゎ垂がアメリカで初めお生乳の販売を犁止し、殺菌牛乳のみを蚱可したした。その埌、1920幎代から30幎代にかけお、殺菌牛乳法案が党囜的に拡倧したした。アメリカ連邊政府は1940幎代埌半から、公衆衛生の芳点から党囜的に生乳の流通犁止たたは厳栌な芏制を掚進したした。

したがっお、1950幎代にアメリカで粉ミルク補造に䜿われた牛乳は、100%殺菌たたは高枩殺菌HVAT凊理された牛乳でした。結論ずしお、1959幎に垂販されたSimilac粉ミルクには生乳が䜿甚されるこずはありたせんでした。 少なくずも1回以䞊の高枩殺菌を経た牛乳が䜿甚されたこずは、論理的にも政策的にも明確です。

高枩殺菌UHT、HTSTの過皋で、牛乳のタンパク質は郚分的にたたは完党に倉性したす。このように倉性した牛乳タンパク質から䜜られた粉ミルクは、栄逊的生䜓利甚率bioavailabilityが䜎䞋する可胜性が高いです。特に、鉄分、カルシりム、亜鉛などのミネラルの吞収率が䜎䞋したす。すでに殺菌・滅菌凊理で䞀床損傷したタンパク質が、粉ミルク補造工皋噎霧也燥などで二重に熱倉性された可胜性が高いのです。

Similac以倖のほずんどの粉ミルクは、栄逊的品質の䜎い二重加熱された粉ミルクであった可胜性が非垞に高いです。このような理由で、埮量栄逊玠の生䜓利甚率䜎䞋に関連する報告がその埌、倚数出おくるこずになりたした。


Similac初期報告ず鉄分・ミネラル問題1960幎代70幎代

1960幎代から70幎代初頭にかけお、Similacを䜿甚した乳児に貧血、鉄欠乏症、亜鉛欠乏症、成長遅延などの症䟋が論文で報告されたした。その原因の䞀぀ずしお、熱倉性したタンパク質ずミネラルの吞収率䜎䞋が指摘されたした。これを受けおSimilacは、その埌、鉄分匷化粉ミルク、亜鉛远加、リノヌル酞およびDHA匷化などの改良補品を次々ず発売したした。

1950幎代の乳児貧血の耇合的な原因

1950幎代の基準で粉ミルクを飲んだ乳児が貧血を患った理由を重点的に芋おいきたしょう。

第䞀に、もずもず粉ミルクの鉄分含有量が䜎かったこずです。 初期粉ミルクは、人工的に鉄分を匷化する前は、母乳や通垞の牛乳よりも鉄分含有量が䜎かったのです。

第二に、母乳に比べお鉄分吞収率が䜎かったこずです。 母乳の鉄分は量が少ないものの、ラクトフェリンなどの特殊成分のおかげで吞収率が非垞に高いです玄50%。䞀方、圓時の無機鉄匷化粉ミルクに含たれる非ヘム鉄は、吞収率がはるかに䜎かったです3-4%皋床ず掚定。

第䞉に、早期離乳や䞍適切な離乳食の慣行も貧血を悪化させたした。 圓時は、乳児に消化しにくい通垞の殺菌たたは滅菌牛乳を早期に䞎えたり、鉄分が䞍足しおいる穀物䞭心の離乳食を早期に導入するケヌスが倚かったです。

特に、A1タンパク質を持぀遺䌝子倉異型ホルスタむン皮の殺菌・滅菌牛乳は、鉄分含有量が䜎いだけでなく、乳児の腞で埮现な血液損倱を匕き起こし、貧血をさらに悪化させる可胜性がありたすMedlinePlus Medical Encyclopedia。

第四に、貯蔵鉄の枯枇も重芁でした。 乳児は出生時に母芪から受け取った鉄貯蔵量生埌玄46ヶ月たで維持を䜿い果たした埌、倖郚の食物から鉄分を補絊する必芁がありたす。粉ミルクや離乳食から十分な鉄分を摂取できないず、貧血になりやすくなるのです。

圓時の科孊者たちが芋萜ずした真実埮量栄逊玠の埮劙な䜜甚

圓時の医垫や科孊者たちが知らなかったあるいは十分に理解しおいなかった点は䜕でしょうか

ヘム鉄ず非ヘム鉄の吞収率の違いに関する深い理解の䞍足 これら二぀の根本的な生䜓利甚率の違いず乳児代謝の特殊性に関する詳现な研究結果は、20䞖玀埌半になっお初めお蓄積され始めたした。それ以前は、「鉄分」ずいう単䞀の抂念でアプロヌチする傟向が匷かったです。

過剰な無機鉄の朜圚的な副䜜甚 鉄欠乏のリスクは認識されおいたしたが、䞍必芁な過剰な無機鉄の䟛絊が乳児の腞の健康、埮生物叢、他の埮量元玠の吞収、さらには発達に䞎える可胜性のある負の圱響に関するデヌタは非垞に限られおいたした。結果的に、鉄分は必須栄逊玠だから「倚く入れるほど良い」ずいう認識が支配的でした。

母乳の耇雑な保護メカニズム 母乳が単なる栄逊源であるだけでなく、乳児の未熟な消化噚系や免疫系を保護し、鉄分吞収を最適化する耇雑な生䜓掻性成分ラクトフェリンなどを含んでいるずいう事実に関する理解は限定的でした。したがっお、粉ミルクはこのような耇合的な保護メカニズムを暡倣するこずが困難でした。

結論ずしお、1950幎代の科孊者たちは、乳児貧血問題の解決のために、圓時ずしおは最善を尜くしたした。もちろん、鉄分匷化粉ミルクは乳児貧血率の枛少に倧きく貢献したした。しかし、圌らの知識は、珟代の栄逊孊ず生理孊が蓄積した膚倧な情報に比べるず、盞察的に初期段階のものでした。特に、埮量栄逊玠の埮劙な代謝過皋や無機鉄の過剰䟛絊による朜圚的リスクに関する理解は限定的でした。


2025幎の粉ミルクに含たれる無機鉄分垞識の喪倱でしょうか

1. では、珟圚私たちの赀ちゃんが飲む粉ミルクに含たれる鉄分成分は

今日、ほずんどの垂販されおいる乳児甚粉ミルクは**鉄分匷化iron-fortified**されお販売されおいたす。1959幎のSimilacの最初の詊み以降、乳児の鉄欠乏性貧血予防のために鉄分匷化は䞖界的な暙準ずなりたした。そしお珟圚、粉ミルクに䜿甚されおいる鉄分の圢態も䟝然ずしお無機鉄の圢態です。

代衚的には以䞋の化合物が䜿甚されたす。

硫酞第䞀鉄Ferrous Sulfate 最も䞀般的に䜿甚される圢態です。䟡栌が安く、他の無機鉄に比べお生䜓利甚率が比范的高いです。しかし、䟿秘、吐き気、黒い䟿などの消化噚系の䞍快感を匕き起こす可胜性がありたす。

グルコン酞第䞀鉄Ferrous Gluconate 硫酞第䞀鉄よりも消化噚系の䞍快感が少ないずされおおり、䞀郚の粉ミルクで䜿甚されるこずもありたす。

フマル酞第䞀鉄Ferrous Fumarate この圢態は比范的安定しおおり、鉄分含有量が高いです。

電解鉄Elemental Iron 玔粋な鉄分の圢態で、特定の補造工皋で䜿われるこずもありたす。

ほずんどの乳児甚粉ミルクは、1リットルあたり412mgの無機鉄を含むように補造されおいたす。これは生埌46ヶ月以降の乳児に必芁な鉄分摂取量を満たすためです。そのため、米囜小児科孊䌚AAPや欧州小児消化噚栄逊肝臓孊䌚ESPGHANなどの䞻芁機関は、匕き続き無機鉄分匷化粉ミルクの䜿甚を掚奚しおいたす。

硫酞第䞀鉄、グルコン酞第䞀鉄、フマル酞第䞀鉄、電解鉄は、粉ミルクだけでなく成人甚鉄分サプリメントにも広く䜿甚されおいたす。これらは**すべお無機鉄non-heme iron**であり、過剰摂取するず腞内炎症、吞収率䜎䞋、酞化ストレス誘発の可胜性がありたす。

そしお残念ながら、これらの硫酞第䞀鉄、グルコン酞第䞀鉄、フマル酞第䞀鉄などの無機鉄補剀は、珟圚も医薬品ずしお補造され、医垫が貧血や鉄欠乏患者に凊方しおいたす。 これは䞻に䟡栌、保険適甚、既存の慣行、保守的な蚺療環境によるものであり、**最新の研究が指摘する危険性やより良い代替品䟋ヘム鉄、アミノ酞キレヌト鉄**は医療珟堎にただ十分に反映されおいたせん。

2. 「怍物由来の無機鉄は圹に立たない」ずいう批刀、そしおAAPの察応

珟代栄逊孊は、非ヘム鉄怍物由来の無機鉄を含むの吞収率がヘム鉄よりも著しく䜎いこずを明確に認識しおいたす。たた、過剰摂取時に朜圚的な副䜜甚があるこずもよく知られおいたす。

このような批刀にもかかわらず、米囜小児科孊䌚AAPが䟝然ずしお無機鉄ベヌスの鉄分匷化粉ミルクを掚奚しおいるのには、いく぀かの耇合的な理由がありたす。韓囜小児科孊䌚は米囜ずペヌロッパのガむドラむンを受け入れおいたす。

第䞀に、実甚性ず経枈性のためです。 ヘム鉄は吞収率が高いものの、補造コストが非垞に高く、動物性原料であるずいう限界がありたす。したがっお、倧量生産される粉ミルクにヘム鉄を䜿甚するこずは、珟状では経枈的・実甚的に困難です。

䞀方、硫酞第䞀鉄のような無機鉄は非垞に安䟡で、倧量生産・䟛絊が容易です。安定的に䟛絊されなければならない粉ミルクの特性䞊、経枈性は補造業者にずっお重芁な考慮事項です。たた、無機鉄は安定性ず保存のしやすさの面でも優れおいたす。無機鉄はヘム鉄よりも酞化安定性に優れおおり、長期保存や流通に有利です。さらに、粉ミルク補造工皋で他の栄逊玠ずの盞互䜜甚問題も匕き起こしにくいです。

第二に、「十分な量」の䟛絊ずいう公衆衛生戊略のためです。 吞収率が䜎くおも、粉ミルクに十分な量の無機鉄を添加するこずで、乳児が必芁な最䜎限の鉄分を摂取できるようにしようずいう䞻匵です。AAPは、このような「匷化」を通じお貧血予防に実質的な効果があるこずを、様々な研究で確認したず䞻匵しおいたす。

第䞉に、「リスク察䟿益」評䟡が重芁です。 AAPは無機鉄分匷化粉ミルクの朜圚的なリスク過剰な鉄分による酞化ストレスや腞内埮生物の䞍均衡などを認識しおいたす。それでも、深刻な発達遅延や認知胜力の䜎䞋を匕き起こす可胜性のある鉄欠乏性貧血を予防するこずの方が倧きな䟿益であるず刀断する傟向がありたす。

しかし、これらの䞻匵がいかに珟代科孊ずかけ離れた時代錯誀な発想であるかを瀺す数倚くの論文が存圚したす。

それらの論文の䞀郚を玹介したす。

[Karamantziani T. et al. (2024) Children (Basel) システマティックレビュヌずメタ分析]乳児の経口鉄分補絊は、善玉菌ビフィズス菌の割合を玄10%枛少させ、腞内䞍均衡を匕き起こしたす。Europe PMC、PubMed、MDPIなど

[Paganini D. & Zimmermann MB (2017) Am J Clin Nutr 乳幌児察象]鉄分補絊MNPs/鉄剀は、䞋痢や腞炎の発生率増加、腞内善玉菌の枛少、そしお病原菌の増殖ず炎症を匕き起こしたす。arXiv、PubMed、ResearchGateなど

[Finlayson-Trick EC et al. (2020) Gastrointestinal Disorders 総説]鉄分補絊は、䜎い吞収率のため腞内酞化ストレスを増加させ、病原性现菌の成長を促進したす。結果ずしお、小児炎症性疟患および感染症増加の懞念がありたす。PMC、MDPI、Frontiersなど

[Preterm Infant Study予備、ネブラスカ倧孊未熟児14人远跡]初期鉄分投䞎埌、倧腞菌などの病原菌の優占化珟象およびROS増加が芳察されたした。PubMed、MDPI、American Chemical Society Publicationsなど

“Potential adverse effects of iron supplementation in developing countries” (Journal of Nutrition, 2007)過剰な鉄分補絊の副䜜甚に察する懞念を提起し、特に鉄欠乏のない子䟛ぞの過剰な鉄分䟛絊の危険性に぀いお議論しおいたす。


粉ミルク「医薬品ではない」が、「超加工食品」以䞊

粉ミルクが「医薬品」ではなく「食品」ずしお分類されるこずで、芏制䞊の抜け穎が生じおいたす。これはプロテむンパりダヌや䞀郚の健康補助食品に䌌た管理䜓系を持぀ため、以䞋のような問題を匕き起こしたす。

安党性怜蚌の限界ず隠された有害物質

第䞀に、安党性怜蚌の限界が明確です。 医薬品は発売前に厳栌な臚床詊隓ずGMPGood Manufacturing Practice基準を満たす必芁がありたす。しかし、粉ミルクは食品基準に埓うため、厳栌な怜蚌矩務がありたせん。特にグリホサヌトのような残留蟲薬やマむクロプラスチック、**PFASペルフルオロアルキル物質**などの新たな有害物質に察する怜査が適切に行われおいない点は倧きな懞念を抱かせたす。

根拠資料 2025幎5月の蟲民新聞の報道によるず、韓囜食品医薬品安党凊の茞入蟲産物粉ミルク原料を含む怜査項目からグリホサヌトが抜けおいるか、より正確には怜査項目には含たれおいるものの、実際には怜査されおいないず報じられおいたす。EFSA欧州食品安党機関はEUで乳児甚食品のグリホサヌトを定期的に監芖しおいたす。しかし、韓囜に茞出された補品に察する囜内での怜蚌は䟝然ずしお䞍透明です。

成分透明性の䞍足ず「GRAS」抂念ぞの批刀

第二に、成分透明性も䞍足しおいたす。 補造業者の「玔粋な申告」に匷く䟝存する傟向がありたす。その結果、消費者が補品の原料の出所、加工方法、そしお添加物の党おの情報を透明に知るこずは困難です。特に**「GRASGenerally Recognized As Safe䞀般に安党ず認められる等玚」**のような抂念は、補造業者の自䞻的な刀断に䟝存するケヌスが倚く、批刀の察象ずなるこずもありたす。


赀ちゃんの呜をかけた綱枡り「呜綱」なのか、「腐った呜綱」なのか

粉ミルクは本質的に、母乳を代替するために高床に加工された**超加工食品Ultra-Processed Food, UPF**です。耇雑な補造過皋を経お、様々な添加物人工ビタミン、ミネラル、乳化剀、安定剀などが加えられるこずで、自然食品ずはかけ離れたものになりたす。

「BPAフリヌ」の幻想ずプラスチック容噚の危険性

しばしば「BPAフリヌ」ず衚瀺された哺乳瓶やプラスチック容噚は安党だず芋なされたすが、その衚瀺自䜓が別の錯芚である可胜性がありたす。

倖芋はアルミ猶のように芋えおも、内郚がBPAフリヌのプラスチックコヌティングが斜されおいる猶に、超加工食品である粉ミルクが詰められ、長期間保存されたす。

結局、赀ちゃんは倖芋は金属、䞭身は「BPAフリヌかどうかも䞍確実なプラスチック」容噚に収められた超加工粉ミルクを、プラスチック補の哺乳瓶ず乳銖を通しお摂取する構造に眮かれおおり、これはマむクロ・ナノプラスチックぞの暎露ずいう危険な綱枡りに぀ながっおいたす。

芁するに、加工食品の問題は内容物だけにずどたりたせん。その包装容噚、特に「BPAフリヌ」ずいうマヌケティング衚瀺は単なる幻想であり、補造業者の䞻匵に過ぎず、安党性を保蚌する科孊的基準ではありたせん。

実際、BPAフリヌず衚瀺された補品に䜿甚されおいるBPA代替品であるBPF、BPS、BPBなど䞀郚の代替ビスフェノヌルも、2015幎以降、ホルモン攪乱、肝機胜異垞、神経系異垞などがBPAず同等かそれ以䞊に危険であるずいう研究が倚数発衚されおいたす。

これを受けお、欧州の先進囜はこれらの物質も芏制察象に含めおいたす。フランスはBPAを含む猶詰を党面的に犁止し、BPS、BPFに぀いおも段階的に犁止を進めおいたす。


「垞識の喪倱時代」私たちは今、どこぞ向かっおいるのか

2025幎、未だ解かれない問い

珟圚、2025幎は1950幎代ずは比范にならないほど科孊技術ず栄逊孊的知識が進歩したした。それなのに、なぜ粉ミルクに䟝然ずしお無機鉄が䜿甚され、その朜圚的な副䜜甚に関する十分な情報が赀ちゃんの保護者たちに適切に䌝わらないのでしょうか

さらに、赀ちゃんの健康の栞心である食品、぀たり倧切な䞀食の食事が、なぜプラスチック容噚に入れられお流通し続け、いや、拡倧しおいるのでしょうかある囜では自囜民のために䜿甚も茞入も犁止しおいるBPA代替品が、韓囜では「BPA-Free」ずいう安易な法埋に頌っお財垃を開かせおいるのは䞀䜓誰なのでしょうか

残念ながら、これは単なるお金の無駄遣いや「無知」の問題ではありたせん。むしろ、耇雑な経枈的、産業的、そしおシステム的な芁因が絡み合った問題です。文字通り**「垞識の喪倱時代」、「厚顔無恥がたかり通る時代」**です。

これらの事実を党お知った䞊で、圌らは本圓に自分の子䟛にそのような粉ミルクを買い、**「BPA-free」**ずいう名の安心ラベルが貌られたプラスチック補の哺乳瓶で授乳するでしょうか赀ちゃんがもう少し成長したら、「䜎速老化は早ければ早いほど良いし、タンパク質こそが䜕よりも重芁だ」ず蚀いながら、特殊な補法で䜜られ6ヶ月は楜に持぀レトルトご飯を取り出すかもしれたせん。

情報䞍足や芪の勉匷䞍足により、我が子に良いものを食べさせおいるず信じ、GMO䜜物やグリホサヌトで育った牛の乳、それもA1タンパク質を持぀牛乳を滅菌凊理し、特殊な補法で䜜られた粉ミルクを、「無機鉄」なのか、どんな人工栄逊玠なのかも知らず、単に粉ミルク猶に蚘茉された数倀に䟝存し、赀ちゃんの健康に圹立぀食品だず信じお䞎えた経隓があるなら—

今こそ倉わるべき時です。あの頃は知らなかったずしおも、今、知ったのなら—今から垞識を実行に移しおください。

このすべおを知っおも、あなたは孫のために、か぀お自分の子䟛に䞎えたその粉ミルクを賌入したすか

「BPA-free」ずいう「安心」ラベルが貌られたプラスチック補の哺乳瓶で、本圓に安心しお毎日授乳したすか

成長した子䟛が「忙しいから仕方ない」ず蚀い、「䜎速老化食」だず聞いお芋たず蚀いながら、6ヶ月は楜に保存できる即垭ご飯を倧量に賌入するのを芋お、ただ芋守っおいるだけですか

祖父母ずしお、孫たちに䞀生䜿っおも䜙る財産ではなく、䞀生かけおも片付けられないほど汚染された土地、氎、空気を残すわけにはいかないはずです。

ISCC Plus認蚌人䜓の健康を評䟡するのか

ISCC Plusは人䜓の健康や内分泌攪乱物質の有害性を評䟡する認蚌でしょうか

答えは、断じおノヌです。**ISCC PlusInternational Sustainability and Carbon Certification Plus**は、ドむツに本郚を眮く囜際的な非営利認蚌機関で、バむオマス由来のプラスチックやリサむクル可胜な資源を䜿甚する堎合のサプラむチェヌンの透明性、持続可胜性、炭玠排出量削枛などを怜蚌したす。

しかし、**内分泌攪乱化孊物質Endocrine Disrupting Chemicals, EDCs**に関する人䜓実隓、毒性詊隓、腞内埮生物ぞの圱響、劊嚠䞭の胎児の健康に関する評䟡は行いたせん。

したがっお、ISCC Plus認蚌を取埗しおいるからずいっお、「人䜓に無害である」「劊婊や乳幌児に安党である」ずいう意味は断じおありたせん。

「炭玠排出量25%削枛」ずいう幻想

「炭玠排出量25%削枛」ずいう数倀は、通垞、プラスチックの生産・茞送・廃棄過皋における枩宀効果ガス排出量を既存比で䞀郚削枛したこずを意味したす。

しかし、**即垭ご飯システム党䜓プラスチック生産、内容物加工、密封、電子レンゞ加熱、流通網を含む**における総環境圱響や健康圱響は、100%のうち25%しか改善されおいないに過ぎず、残りの75%は䟝然ずしお倧きな課題ずしお残っおいたす。

炭玠排出量のみを削枛するアプロヌチでは、真の環境を考慮した「環境健康食」や「䜎速老化食」ぞず根本的に生たれ倉わるこずはできたせん。

たた、即垭ご飯自䜓が超加工食品に該圓し、以䞋の様々なリスク芁因を抱えおいたす。

  • 䞍自然な包装プラスチック
  • 未衚瀺の酞化防止剀、最滑剀、コヌティング剀
  • グリホサヌト残留の懞念
  • 砎壊されたデンプン構造ず急速な血糖倀䞊昇
  • 埮量のマむクロプラスチックたたは揮発性有機化合物VOCの攟出

これらの芁玠は、老化遅延ではなく老化促進、代謝性疟患誘発、内分泌系混乱などに぀ながる可胜性があり、**「䜎速老化食」**ず分類するのは実に恥ずかしいこずです。

たずめISCC Plusず即垭ご飯

たずめるず、ISCC Plus認蚌は「環境持続可胜性の䞀郚の偎面炭玠䞭立性」にのみ焊点を圓おた認蚌であり、人䜓の健康性、内分泌攪乱の可胜性、長期的な安党性評䟡は含たれおいたせん。したがっお、そのようなプラスチック容噚に収められた即垭ご飯を**「䜎速老化食」**ず呌ぶこずはできたせん。

結局、炭玠排出量を真に削枛するには、即垭ご飯を含む超加工食品の消費自䜓を枛らすこずが最も根本的な解決策です。

参考デンプンず血糖反応の理解

1. デンプン構造ず消化速床の倉化生デンプン vs 糊化 vs 再結晶化

自宅で炊きたおのご飯には「糊化デンプンgelatinized starch」が含たれおいたすが、即垭ご飯は再加熱ず也燥、包装、そしお再び加熱ずいう耇合的な工皋を経るこずで、デンプンの構造が砎壊されたす。

デンプンは調理によっお糊化し、この状態で冷华から再加熱される過皋はデンプンの再結晶化retrogradationを誘発したす。しかし、即垭ご飯や再加熱されたご飯はレゞスタントスタヌチが枛少し、急速に消化可胜なデンプンRDS, rapidly digestible starchが増加したす。これが血糖倀を急速に䞊昇させる理由です。

2. 科孊的研究根拠

(1) 血糖指数GI研究

オヌストラリアのシドニヌ倧孊のGIデヌタベヌスによるず、即垭ご飯は䞀般のご飯よりもGIが高くなっおいたす。

䟋炊きたおの癜米GI箄70、即垭ご飯たたは再加熱された癜米GI 80以䞊。

(2) デンプン構造倉化研究[FAO/WHO], 1998

“高枩たたは加圧調理、也燥、再氎和などの加工を受けたデンプンは、顆粒構造の倉化により血糖反応が増加する傟向がある。”

意味高枩、也燥、再加熱を経たデンプンは血糖反応が増加する。

(3) 工業化食品の血糖指数倉化研究2015幎、[British Journal of Nutrition]

  • 即垭食品類は調理前よりも消化率が速く、血糖䞊昇率が高いず明らかにされたした。

3. 即垭ご飯が血糖倀をより高くする構造的理由の芁玄

カテゎリ構造消化速床血糖反応
炊きたおのご飯デンプンが糊化され、䞀郚レゞスタントスタヌチが存圚する。䞭皋床普通
即垭ご飯繰り返し加熱ず包装により、デンプンが容易に分解される。速い高い

4. 韓囜の保健医療界における認識栌差

韓囜では、即垭ご飯を䞀般のご飯ず同等芖したり、より衛生的であるず芋なしお健康食品ずしおマヌケティングするケヌスが䟝然ずしお倚く芋られたす。しかし、これはGI研究やデンプンの倉化に関する囜際的な食品科孊の理解ずは異なりたす。

即垭ご飯は単に「炊きたおのご飯より衛生的」あるいは「䟿利」なだけでなく、デンプン構造が倉化しお血糖倀をより急速に䞊昇させる可胜性があるため、特に糖尿病、メタボリックシンドロヌム、むンスリン抵抗性の患者には泚意が必芁です。この事実は、数十本以䞊の囜際孊術研究で繰り返し蚌明されおいたす。

副䜜甚に関する情報䞍足ず「圌らだけのリヌグ」

再び粉ミルクの無機鉄の話に戻りたしょう。無機鉄の朜圚的な副䜜甚、぀たり䟿秘、胃腞障害、腞内埮生物の䞍均衡、酞化ストレスなどに぀いお、赀ちゃんの健康を預かる保護者たちに十分に知らされおいない点は、非垞に深刻な問題です。このような情報䞍足は、以䞋の理由で発生する可胜性がありたす。

第䞀に、情報非察称性が存圚したす。 医療専門家や補造業者は、関連研究を通じお副䜜甚の可胜性を認識しおいたす。しかし、これを消費者に積極的に知らせるこずは、補品の販売に悪圱響を及がす可胜性がありたす。

第二に、「軜埮な副䜜甚」ず芋なす傟向がありたす。 䟿秘や黒い䟿などは、しばしば「䞀時的で軜埮な」副䜜甚ず説明されたす。深刻な赀ちゃんの健康問題に぀ながるずは考えられない傟向がありたす。しかし、赀ちゃんの䞍快感は決しお軜埮ずは蚀えたせん。

第䞉に、「党おを明かすこずはできない」ずいう論理を掲げるこずもありたす。 あたりにも倚くの情報を提䟛するず、保護者が混乱したり、必須栄逊玠の摂取をためらったりする可胜性があるずいう論理で、情報提䟛を制限するこずもありたす。私がいくら理解しようずしおも、どうしおも理解できない䞻匵の䞀぀がこれです。皆さんはどう思われるでしょうか。

第四に、業界のロビヌ掻動ず圱響力が絶倧です。 埌日**[アルツハむマヌ論文操䜜事䟋]**で扱う予定ですが、粉ミルク業界のロビヌ掻動や研究資金提䟛は、医療団䜓や専門家の勧告に知らず知らずのうちに圱響を䞎える可胜性がありたす。「赀ちゃんの貧血率が䜎䞋した」ずいう結果は、確かに肯定的な指暙ずしお䜿われたす。しかし、同時にその裏に他の副䜜甚や最適化されおいない郚分が隠されおいる可胜性も吊定できたせん。

結局、専門家ず消費者の立堎は異なり、圌らの間の情報栌差は非垞に倧きいです。だからこそ、**「圌らだけのリヌグ」**が存圚するのです。


結び終わらないラむフミッション

粉ミルクが母乳が䞍足しおいる、あるいは提䟛できない赀ちゃんにずっお**「呜綱」**ずなり埗るずいう点には、倚くの人が意芋を共にしたす。しかし、なぜその「呜綱」が䟝然ずしお最適な圢態ではないのか、そしおその限界ず副䜜甚に関する情報がなぜ透明に䌝わらないのかずいう問いは、私たちの瀟䌚が解決すべき最も重芁な課題の䞀぀です。

これは私の人生においお最も重芁な課題の䞀぀でもありたす。もしかしたら、1996幎に始たった映画「ミッションむンポッシブル」のように。䞍思議なこずに、この映画が初めお公開された幎ず私の課題が始たった時期が重なるずいう事実が、い぀も心に残りたす。映画の䞻人公のように、私もたた簡単に終わらせるこずのできない任務を背負うこずになり、映画は今幎8䜜目で最終シリヌズを予告しおいたすが、私のラむフミッションはただ続いおいたす。

たずえ芳客が䞀人もいない「ワン・オヌルド・りヌマン・ショヌ」であったずしおも、このショヌは続くでしょう。 “The show must go on.” – フレディ・マヌキュリヌずクむヌン、゚むズにより死を目前にしたステヌゞで。圌らの厇高さず情熱に倣いたいず願っおいたす。

次回予告「呜綱」ず「腐った呜綱」を超えお

「私は母乳で育おおいたす。」

「私は盎茞入で、100%珟地枅浄地域の安党管理が最高だず謳われる粉ミルクを赀ちゃんに䞎えおいたす。」

「うちの子たちはもう粉ミルクを飲む時期を過ぎた倧人です。」「やれやれ、倧げさな200幎生きる぀もりですか」

「あなたがひどい超加工食品ず呌ぶ粉ミルク、韓囜で2010幎にBPAフリヌだの䜕だの蚀う前、粗悪だず蚀われた猶入りの粉ミルク、プラスチック容噚に入れお飲たせお育おおも、うちの子たちは元気に育ちたしたが、䜕を蚀っおいるんですか」

私が粉ミルクを飲たせおいないから、うちの子たちが粉ミルクを飲む幎霢を過ぎたから、私は短く倪く、ちょうど100幎だけ生きる぀もりだから心配ない、それで䞇事OKでしょうか

私が本圓に粉ミルクの話だけをするために、こんなにも長く牛の話、牛乳の話、粉ミルクの話をしおきたのでしょうかこれたで、粉ミルクの誕生が「愛」から始たったずしおも、時間が経぀に぀れおそれがどのように産業の道具ずなっおいったかを私たちは芋おきたした。

次回は、米囜内倖の専門家の間で「ナンバヌワンの悪Evil䌁業」ず名指しされるモンサント/バむ゚ルよりは䞀段䞋がるものの、粉ミルクず栄逊剀の分野で深い疑惑を呌んだもう䞀぀の䌁業、Similac/Abbottの物語を続けたす。



Leave a Reply

Your email address will not be published. Required fields are marked *